• Title/Summary/Keyword: series model

Search Result 5,386, Processing Time 0.036 seconds

Evaluation Method of Architecture Asset (아키텍처 자산의 평가 방법)

  • Choi, Han-yong
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.101-106
    • /
    • 2018
  • Software are being studied to register and manage assets. And Methods for evaluating software systems have been based on subjective evaluation criteria. We propose an evaluation model for evaluating complex assets obtained from the complexity measurement of the preceding asset management system. We used scales to measure and provide logical complexity to measure the complexity of our architectural assets. And we used a method to evaluate whether it expresses attribute value of architecture asset. We have also built an evaluation model criterion for evaluating the usability of the asset data based on the ISO/IEC 25010 quality model characteristics of the SQuaRE Series. When the designers design the asset as a composite asset, the optional evaluation of the negative property that weights are assigned according to the characteristics of each asset is applied to secure the flexibility of the evaluation model.

THE USE OF NEURAL NETWORK TECHNOLOGIES TO DETERMINE WELDING

  • Kim, Ill-Soo;Jeong, Young-Jae;Park, Chang-Eun;Sung, Back-Sub;Kim, In-Ju;Son, Jon-Sik;Yarlagadda, Prasad K.D.V.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.301-306
    • /
    • 2002
  • This paper presents the use of the neural network technology to establish a mathematical model for predicting bead geometry (top-bead width, top-bead height, back-bead width and back-bead height) for multi-pass welding, and understand relationships between process parameters and bead geometry for robotic GMA welding process. Using a series of robotic arc welding, additional multi-pass butt welds were carried out in order to verify the performance of the developed neural network model. The results show that not only the proposed model can predict the bead geometry with reasonable accuracy and guarantee the uniform weld quality, but also the neural network model could be better than the linear and curvilin ear equations developed from Lee [8].

  • PDF

Assessment of MODIS Leaf Area Index (LAI) Influence on the Penman-Monteith Evapotranspiration Estimation of SLURP Model (MODIS 위성영상으로부터 추출된 엽면적지수(LAI)가 SLURP 모형의 Penman-Monteith 증발산량 추정에 미치는 영향 평가)

  • Ha, Rim;Shin, Hyung-Jin;Hong, Woo-Yong;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1087-1091
    • /
    • 2008
  • Evapotranspiration (ET) is an important factor while simulating daily streamflow in hydrological models. The LAI (Leaf Area Index) value reflecting the conditions of vegetation generally affects considerably in the estimation of ET, for example, when using FAO Penman Monteith equation. Recently in evaluating the vegetation condition as a fixed quantity, the remotely sensed LAIs from MODIS satellite data are avaliable, and the time series values of spatial LAI coupled with land use classes are utilized for ET evaluation. The 4 years (2001-2004) MODIS LAI data were prepared for the evaluation of continuous hydrological model, SLURP (Semi-distributed Land Use-based Runoff Processes). The model was applied for simulating the dam inflow of Chungjudam watershed ($6661.58\;km^2$) located in the upstream of Han river basin of South Korea. From the model results, the FAO Penman Monteith ET was affected by the MODIS LAIs. Especially for the ET of deciduous forest, the Total ET was 33.9 % lager than coniferous forest for the 3.8 % lager of LAI. The watershed average LAI caused a 7.0 % decrease in average soil moisture of the watershed and 14.3 % decrease of ground water recharge.

  • PDF

Intelligent IIR Filter based Multiple-Channel ANC Systems (지능형 IIR 필터 기반 다중 채널 ANC 시스템)

  • Cho, Hyun-Cheol;Yeo, Dae-Yeon;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1220-1225
    • /
    • 2010
  • This paper proposes a novel active noise control (ANC) approach that uses an IIR filter and neural network techniques to effectively reduce interior noise. We construct a multiple-channel IIR filter module which is a linearly augmented framework with a generic IIR model to generate a primary control signal. A three-layer perceptron neural network is employed for establishing a secondary-path model to represent air channels among noise fields. Since the IIR module and neural network are connected in series, the output of an IIR filter is transferred forward to the neural model to generate a final ANC signal. A gradient descent optimization based learning algorithm is analytically derived for the optimal selection of the ANC parameter vectors. Moreover, re-estimation of partial parameter vectors in the ANC system is proposed for online learning. Lastly, we present the results of a numerical study to test our ANC methodology with realistic interior noise measurement obtained from Korean railway trains.

Nonlinear Analysis in Love Dynamics with Triangular Membership Function as External Force (삼각 퍼지 소속 함수를 외력으로 가진 사랑 동력학에서의 비선형 해석)

  • Bae, Young-Chul
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.217-224
    • /
    • 2017
  • Recently, we have been continued effort that chaotic theory apply into love model which is an area of social science. To make the chaotic behaviors in the differential equation that represent as Romeo and Juliet, we apply an external force to the differential equation. However, this external force have disadvantage that cannot exactly represent for emotion of human. In this paper, to solve these advantage, we introduce triangular fuzzy membership function to provide the external force that can describe most similar status for action and word of human in the love model of Romeo and Juliet. Also, to confirm the chaotic behaviors in the love model of Romeo and Juliet with proposed fuzzy membership function, we use time series and phase plane.

Experimental and Numerical Study on Towing Stability of Transportation Barge (운송 바지선의 예인안정성에 관한 모형시험 및 수치해석 연구)

  • Nam, Bo Woo;Hong, Sa Young;Kim, Jin Ha;Choi, Sung Kwon;Kim, Jong-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.102-110
    • /
    • 2014
  • This paper presents the results of an experimental and numerical study on the towing characteristics of a barge. A series of model tests were carried out at the Ocean Engineering Basin of KRISO. A model with a 1:50 scale ratio was constructed out of wood. First, force coefficient tests were performed in order to obtain the surge, sway, and yaw force coefficients of the barge. The focus was the effect of skeg on the force coefficients. The stability parameter was calculated from the force coefficients. Next, towing tests in calm sea were carried out with different towline lengths and towing speeds. The trajectories of the barge and the towline tensions were measured during the tests. The measured trajectories were compared with numerical simulation results using a cross-flow model. The towing stability of the barge in a calm sea is discussed in detail.

Simulation of I-V characteristics of a PV module in matlab (Matlab을 통한 PV 모듈의 I-V 출력 특성 시뮬레이션)

  • Hong, Jong-Kuong;Jung, Tae-Hee;Ryu, Se-Hwan;Won, Chang-Sub;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.71-72
    • /
    • 2008
  • This paper describes a circuit based simulation model for a Photovoltaic(PV) cell in order to estimate the electrical behavior of the solar cell module with changes of environmental parameters such as shunt resistance, series resistance, temperature and irradiance. An accurate I-V model of PV module is presented based on the Shockley diode model. The general model was implemented on Matlab scrip file, and used irradiance and temperature as variables and outputs of the I-V characteristic. A typical PV module was used for the evaluation, and results was compared with reference taken directly from the manufacturer's published curves leading to excellent agrement with the theoretical prediction.

  • PDF

Modeling of unreinforced brick walls under in-plane shear & compression loading

  • Kalali, Arsalan;Kabir, Mohammad Zaman
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.247-278
    • /
    • 2010
  • The study of the seismic vulnerability of masonry buildings requires structural properties of walls such as stiffness, ultimate load capacity, etc. In this article, a method is suggested for modeling the masonry walls under in-plane loading. At the outset, a set of analytical equations was established for determining the elastic properties of an equivalent homogeneous material of masonry. The results for homogenized unreinforced brick walls through detailed modeling were compared in different manners such as solid and perforated walls, in-plane and out-of-plane loading, etc, and it was found that this method provides suitable accuracy in estimation of the wall linear properties. Furthermore, comparison of the results of proposed modeling with experimental out coming indicated that this model considers the non linear properties of the wall such as failure pattern, performance curve and ultimate strength, and would be appropriate to establish a parametric study on those prone factors. The proposed model is complicated; therefore, efforts need to be made in order to overcome the convergency problems which will be included in this study. The nonlinear model is basically semi-macro but through a series of actions, it can be simplified to a macro model.

Prediction model of resistivity and compressive strength of waste LCD glass concrete

  • Wang, Chien-Chih
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.467-475
    • /
    • 2017
  • The purpose of this study is to establish a prediction model for the electrical resistivity ($E_r$) of self-consolidating concrete by using waste LCD (liquid crystal display) glass as part of the fine aggregate and then, to analyze the results obtained from a series of laboratory tests. A hyperbolic function is used to perform nonlinear multivariate regression analysis of the electrical resistivity prediction model, with parameters such as water-binder ratio (w/b), curing age (t) and waste glass content (G). Furthermore, the relationship of compressive strength and electrical resistivity of waste LCD glass concrete is also found by a logarithm function, while compressive strength is evaluated by the electrical resistivity of non-destructive testing (NDT). According to relative regression analysis, the electrical resistivity and compressive strength prediction models are developed, and the results show that a good agreement is obtained using the proposed prediction models. From the comparison between the predicted analysis values and test results, the MAPE value of electrical resistivity is 17.0-18.2% and less than 20%, the MAPE value of compressive strength evaluated by $E_r$ is 5.9-10.6% and nearly less than 10%. Therefore, the prediction models established in this study have good predictive ability for electrical resistivity and compressive strength of waste LCD glass concrete. However, further study is needed in regard to applying the proposed prediction models to other ranges of mixture parameters.

OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity

  • Cho, Hyung Ik;Sun, Chang Guk;Kim, Jae Hyun;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.987-995
    • /
    • 2018
  • In this study, a relationship between small-strain shear modulus ($G_{max}$) and overconsolidation ratio (OCR) based on shear wave velocity ($V_S$) measurement was established to identify the stress history of centrifuge model ground. A centrifuge test was conducted in various centrifugal acceleration levels including loading and unloading sequences to cause various stress histories on centrifuge model ground. The $V_S$ and vertical effective stress were measured at each level of acceleration. Then, a sensitivity analysis was conducted using testing data to ensure the suitability of OCR function for the tested cohesionless soils and found that OCR can be estimated based on $V_S$ measurements irrespective of normally-consolidated or overconsolidated loading conditions. Finally, the developed $G_{max}$-OCR relationship was applied to centrifuge models constructed and tested under various induced stress-history conditions. Through a series of tests, it was concluded that the induced stress history on centrifuge model by compaction, g-level variation, and past overburden load can be analysed quantitatively, and it is convinced that the OCR evaluation technique will contribute to better interpret the centrifuge test results.