• Title/Summary/Keyword: series model

Search Result 5,386, Processing Time 0.031 seconds

Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM (섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용)

  • Lee, Hyun Sang;Jo, Bo Geun;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.30 no.3
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.

FE model of electrical resistivity survey for mixed ground prediction ahead of a TBM tunnel face

  • Kang, Minkyu;Kim, Soojin;Lee, JunHo;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.301-310
    • /
    • 2022
  • Accurate prediction of mixed ground conditions ahead of a tunnel face is of vital importance for safe excavation using tunnel boring machines (TBMs). Previous studies have primarily focused on electrical resistivity surveys from the ground surface for geotechnical investigation. In this study, an FE (finite element) numerical model was developed to simulate electrical resistivity surveys for the prediction of risky mixed ground conditions in front of a tunnel face. The proposed FE model is validated by comparing with the apparent electrical resistivity values obtained from the analytical solution corresponding to a vertical fault on the ground surface (i.e., a simplified model). A series of parametric studies was performed with the FE model to analyze the effect of geological and sensor geometric conditions on the electrical resistivity survey. The parametric study revealed that the interface slope between two different ground formations affects the electrical resistivity measurements during TBM excavation. In addition, a large difference in electrical resistivity between two different ground formations represented the dramatic effect of the mixed ground conditions on the electrical resistivity values. The parametric studies of the electrode array showed that the proper selection of the electrode spacing and the location of the electrode array on the tunnel face of TBM is very important. Thus, it is concluded that the developed FE numerical model can successfully predict the presence of a mixed ground zone, which enables optimal management of potential risks.

Research on Forecasting Framework for System Marginal Price based on Deep Recurrent Neural Networks and Statistical Analysis Models

  • Kim, Taehyun;Lee, Yoonjae;Hwangbo, Soonho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.

An Iterative Scheme for Resolving Unbalanced Forces Between Nonlinear Flexural Bending and Shear Springs in Lumped Plasticity Model (비선형 휨 및 전단 힌지 사이의 불평형력 해소를 위한 수렴계산 기법)

  • Kim, Yousok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.227-235
    • /
    • 2022
  • For a member model in nonlinear structural analysis, a lumped plastic model that idealizes its flexural bending, shear, and axial behaviors by springs with the nonlinear hysteretic model is widely adopted because of its simplicity and transparency compared to the other rigorous finite element methods. On the other hand, a challenging task in its numerical solution is to satisfy the equilibrium condition between nonlinear flexural bending and shear springs connected in series. Since the local forces between flexural and shear springs are not balanced when one or both springs experience stiffness changes (e.g., cracking, yielding, and unloading), the additional unbalanced force due to overshooting or undershooting each spring force is also generated. This paper introduces an iterative scheme for numerical solutions satisfying the equilibrium conditions between flexural bending and shear springs. The effect of equilibrium iteration on analysis results is shown by comparing the results obtained from the proposed method to those from the conventional scheme, where the equilibrium condition is not perfectly satisfied.

Cyber risk measurement via loss distribution approach and GARCH model

  • Sanghee Kim;Seongjoo Song
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.1
    • /
    • pp.75-94
    • /
    • 2023
  • The growing trend of cyber risk has put forward the importance of cyber risk management. Cyber risk is defined as an accidental or intentional risk related to information and technology assets. Although cyber risk is a subset of operational risk, it is reported to be handled differently from operational risk due to its different features of the loss distribution. In this study, we aim to detect the characteristics of cyber loss and find a suitable model by measuring value at risk (VaR). We use the loss distribution approach (LDA) and the time series model to describe cyber losses of financial and non-financial business sectors, provided in SAS® OpRisk Global Data. Peaks over threshold (POT) method is also incorporated to improve the risk measurement. For the financial sector, the LDA and GARCH model with POT perform better than those without POT, respectively. The same result is obtained for the non-financial sector, although the differences are not significant. We also build a two-dimensional model reflecting the dependence structure between financial and non-financial sectors through a bivariate copula and check the model adequacy through VaR.

Development of machine learning model for automatic ELM-burst detection without hyperparameter adjustment in KSTAR tokamak

  • Jiheon Song;Semin Joung;Young-Chul Ghim;Sang-hee Hahn;Juhyeok Jang;Jungpyo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.100-108
    • /
    • 2023
  • In this study, a neural network model inspired by a one-dimensional convolution U-net is developed to automatically accelerate edge localized mode (ELM) detection from big diagnostic data of fusion devices and increase the detection accuracy regardless of the hyperparameter setting. This model recognizes the input signal patterns and overcomes the problems of existing detection algorithms, such as the prominence algorithm and those of differential methods with high sensitivity for the threshold and signal intensity. To train the model, 10 sets of discharge radiation data from the KSTAR are used and sliced into 11091 inputs of length 12 ms, of which 20% are used for validation. According to the receiver operating characteristic curves, our model shows a positive prediction rate and a true prediction rate of approximately 90% each, which is comparable to the best detection performance afforded by other algorithms using their optimized hyperparameters. The accurate and automatic ELM-burst detection methodology used in our model can be beneficial for determining plasma properties, such as the ELM frequency from big data measured in multiple experiments using machines from the KSTAR device and ITER. Additionally, it is applicable to feature detection in the time-series data of other engineering fields.

PREDICTING KOREAN FRUIT PRICES USING LSTM ALGORITHM

  • PARK, TAE-SU;KEUM, JONGHAE;KIM, HOISUB;KIM, YOUNG ROCK;MIN, YOUNGHO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.1
    • /
    • pp.23-48
    • /
    • 2022
  • In this paper, we provide predictive models for the market price of fruits, and analyze the performance of each fruit price predictive model. The data used to create the predictive models are fruit price data, weather data, and Korea composite stock price index (KOSPI) data. We collect these data through Open-API for 10 years period from year 2011 to year 2020. Six types of fruit price predictive models are constructed using the LSTM algorithm, a special form of deep learning RNN algorithm, and the performance is measured using the root mean square error. For each model, the data from year 2011 to year 2018 are trained to predict the fruit price in year 2019, and the data from year 2011 to year 2019 are trained to predict the fruit price in year 2020. By comparing the fruit price predictive models of year 2019 and those models of year 2020, the model with excellent efficiency is identified and the best model to provide the service is selected. The model we made will be available in other countries and regions as well.

Improvement of hysteretic constitutive model for reinforcements considering buckling

  • Weng Weipeng;Xie Xu;Wang Tianjia;Li Shuailing
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2023
  • The buckling of longitudinal reinforcements under seismic loading accelerates the degradation of the bearing capacity of reinforced concrete columns. The traditional hysteretic constitutive model of reinforcement, which does not consider buckling, usually overestimates the seismic performance of pier columns. Subsequent researchers have also proposed many models including the buckling effects. However, the accuracy of these hysteretic constitutive models proposed for simulating the buckling behavior is inadequate. In this study, based on their works, the influence of historical events on buckling is considered, the path of the re-tensioning phase is corrected by adjusting the boundary lines, and the positions of the onset buckling point and compressive buckling path during each buckling deformation are corrected by introducing correction parameters and a boundary line. A modified hysteretic constitutive model is obtained, that can more accurately reflect the buckling behavior of reinforcements. Finally, a series of hysteresis tests of reinforcements with different slenderness ratios were then conducted. The experimental results verify the effectiveness of the proposed modified model. Indicating that the modified model can more accurately simulate the equivalent stress-strain relationship of the buckling reinforcement segment.

Structural reliability analysis using temporal deep learning-based model and importance sampling

  • Nguyen, Truong-Thang;Dang, Viet-Hung
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.323-335
    • /
    • 2022
  • The main idea of the framework is to seamlessly combine a reasonably accurate and fast surrogate model with the importance sampling strategy. Developing a surrogate model for predicting structures' dynamic responses is challenging because it involves high-dimensional inputs and outputs. For this purpose, a novel surrogate model based on cutting-edge deep learning architectures specialized for capturing temporal relationships within time-series data, namely Long-Short term memory layer and Transformer layer, is designed. After being properly trained, the surrogate model could be utilized in place of the finite element method to evaluate structures' responses without requiring any specialized software. On the other hand, the importance sampling is adopted to reduce the number of calculations required when computing the failure probability by drawing more relevant samples near critical areas. Thanks to the portability of the trained surrogate model, one can integrate the latter with the Importance sampling in a straightforward fashion, forming an efficient framework called TTIS, which represents double advantages: less number of calculations is needed, and the computational time of each calculation is significantly reduced. The proposed approach's applicability and efficiency are demonstrated through three examples with increasing complexity, involving a 1D beam, a 2D frame, and a 3D building structure. The results show that compared to the conventional Monte Carlo simulation, the proposed method can provide highly similar reliability results with a reduction of up to four orders of magnitudes in time complexity.

Comparative Usefulness of Naver and Google Search Information in Predictive Models for Youth Unemployment Rate in Korea (한국 청년실업률 예측 모형에서 네이버와 구글 검색 정보의 유용성 분석)

  • Jung, Jae Un
    • Journal of Digital Convergence
    • /
    • v.16 no.8
    • /
    • pp.169-179
    • /
    • 2018
  • Recently, web search query information has been applied in advanced predictive model research. Google dominates the global web search market in the Korean market; however, Naver possesses a dominant market share. Based on this characteristic, this study intends to compare the utility of the Korean web search query information of Google and Naver using predictive models. Therefore, this study develops three time-series predictive models to estimate the youth unemployment rate in Korea using the ARIMA model. Model 1 only used the youth unemployment rate in Korea, whereas Models 2 and 3 added the Korean web search query information of Naver and Google, respectively, to Model 1. Compared to the predictability of the models during the training period, Models 2 and 3 showed better fit compared with Model 1. Models 2 and 3 correlated different query information. During predictive periods 1 (continuous with the training period) and 2 (discontinuous with the training period), Model 3 showed the best performance. During predictive period 2, only Model 3 exhibited a significant prediction result. This comparative study contributes to a general understanding of the usefulness of Korean web query information using the Naver and Google search engines.