• Title/Summary/Keyword: series model

Search Result 5,386, Processing Time 0.04 seconds

Design of Torque Servo for Impedance Control of Double Vane Rotary Hydraulic Actuator System (더블 베인 회전형 유압 구동시스템의 임피던스 제어를 위한 토크 서보 설계)

  • Kim, Seon-Min;Choi, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.160-168
    • /
    • 2010
  • In order to achieve a force controller with high performance, an accurate torque servo is required. However, the precise torque servo for a double vane rotary actuator system has not been developed till now, due to many nonlinear characteristics and system parameter variations. In this paper, the torque servo structure for the double vane rotary actuator system is proposed based on the torque model. Nonlinear equations are set up using dynamics of the double vane rotary hydraulic actuator system. Then, to derive the torque model, the nonlinear equations are linearized using a taylor series expansion. Both effectiveness and performance of the design of torque servo are verified by torque servo experiments and applying the suggested torque model to an impedance controller.

Soil Failure Mode of a Buried Pipe Around in Soil Undergoing Lateral Movement (측방변형지반속 매설관 주변지반의 파괴모드)

  • Hong, Won-Pyo;Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.11-21
    • /
    • 2002
  • A series of model tests is performed to evaluate the relationship between soil and a buried pipe in soil undergoing lateral movement. As the result of the model tests, a wedge zone and plastic flow zones could be observed in front of the pipe. And also an arc failure of cylindrical cavity could be observed at both upper and lower zones. Failure shapes in both cohesionless and cohesive soils are nearly same, which was investigated failure angle of $45^{\circ}+{\phi}/2$. In the cohesionless soil, the higher relative density produces the larger arc of cylindrical cavity. On the basis of failure mode observed from model tests, the lateral earth pressure acting on a buried pipe in soil undergoing lateral movement could be applying the cylindrical cavity extension mode. The deformation behavior of soils was typically appeared in three divisions, which are elastic zones, plastic zones and pressure behavior zones.

A Model for Settling Rate of the Dredged Soil (준설토의 침강속도 추정모델의 개발)

  • Yun, Sang-Muk;Chang, Pyoung-Wuck;Won, Jung-Yun;Kim, Sung-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.51-59
    • /
    • 2005
  • The settling rate of the dredged soil may vary with mineral composition, grain size distribution, initial con contration and salt concentration of suspension of the site. A series of settling column test was performed to investigate the settling rate characteristics of solid suspension material from dredging and reclamation. The settling rate of soil mixed with various size of particles depended on clay fraction which showed a inherent flux. A model was developed to predict the particle flux of mixed soil from the clay flux and its applicability was verified.

PSCAD/EMTDC Based Modeling of a Grid-Connected Photovoltaic Generation System (PSCAD/EMTDC를 이용한 계통연계형 태양광발전시스템의 모델링)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.204-207
    • /
    • 2004
  • The paper proposes a simulation model of grid-connected photovoltaic generation system (PV system) using on PSCAD/EMTDC, a reliable power system and apparatus transient analysis program. A equivalent circuit model of a solar cell is used for modeling solar array. A series of parameters required for array modeling are deduced from general specification data of a solar module. A PWM voltage source inverter (VSI) model is presented and current control scheme is implemented for VSI control. A maximum power point tracking (MPPT) technique is applied for controlling the PV system. Simulation case study provides V-I and V-P characteristics of solar array and PV system control performance for irradiation changes.

  • PDF

The Analysis of Tunnel Behavior using Different Constitutive Models (다양한 구성방정식에 따른 터널 거동해석)

  • Kim, Young-Min;Kang, Seong-Gwi
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.73-81
    • /
    • 2010
  • The paper presents the application of FE simulations of NATM tunnel using different constitutive models. The results from a series of two dimensional plane strain finite element analyses of medium-liner interaction for NATM are presented. Four types of constitutive models are considered, namely, linear elastic, elasto-plastic Mohr-Coulomb, Hardening-Soil, Soft-Soil model. The design for tunnels requires a proper estimate of surface settlement and lining forces. It is shown that the advanced constitutive model gives better predictions for both ground movement and structural forces.

Design of An Integrated Neural Network System for ARMA Model Identification (ARMA 모형선정을 위한 통합된 신경망 시스템의 설계)

  • Ji, Won-Cheol;Song, Seong-Heon
    • Asia pacific journal of information systems
    • /
    • v.1 no.1
    • /
    • pp.63-86
    • /
    • 1991
  • In this paper, our concern is the artificial neural network-based patten classification, when can resolve the difficulties in the Autoregressive Moving Average(ARMA) model identification problem To effectively classify a time series into an approriate ARMA model, we adopt the Multi-layered Backpropagation Network (MLBPN) as a pattern classifier, and Extended Sample Autocorrelation Function (ESACF) as a feature extractor. To improve the classification power of MLBPN's we suggest an integrated neural network system which consists of an AR Network and many small-sized MA Networks. The output of AR Network which will gives the MA order. A step-by-step training strategy is also suggested so that the learned MLBPN's can effectively ESACF patterns contaminated by the high level of noises. The experiment with the artificially generated test data and real world data showed the promising results. Our approach, combined with a statistical parameter estimation method, will provide a way to the automation of ARMA modeling.

  • PDF

Stochastic simulation based on copula model for intermittent monthly streamflows in arid regions

  • Lee, Taesam;Jeong, Changsam;Park, Taewoong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.488-488
    • /
    • 2015
  • Intermittent streamflow is common phenomenon in arid and semi-arid regions. To manage water resources of intermittent streamflows, stochactic simulation data is essential; however the seasonally stochastic modeling for intermittent streamflow is a difficult task. In this study, using the periodic Markov chain model, we simulate intermittent monthly streamflow for occurrence and the periodic gamma autoregressive and copula models for amount. The copula models were tested in a previous study for the simulation of yearly streamflow, resulting in successful replication of the key and operational statistics of historical data; however, the copula models have never been tested on a monthly time scale. The intermittent models were applied to the Colorado River system in the present study. A few drawbacks of the PGAR model were identified, such as significant underestimation of minimum values on an aggregated yearly time scale and restrictions of the parameter boundaries. Conversely, the copula models do not present such drawbacks but show feasible reproduction of key and operational statistics. We concluded that the periodic Markov chain based the copula models is a practicable method to simulate intermittent monthly streamflow time series.

  • PDF

Homogenized elastic properties of graphene for moderate deformations

  • Marenic, Eduard;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.137-155
    • /
    • 2015
  • This paper presents a simple procedure to obtain a substitute, homogenized mechanical response of single layer graphene sheet. The procedure is based on the judicious combination of molecular mechanics simulation results and homogenization method. Moreover, a series of virtual experiments are performed on the representative graphene lattice. Following these results, the constitutive model development is based on the well-established continuum mechanics framework, that is, the non-linear membrane theory which includes the hyperelastic model in terms of principal stretches. A proof-of-concept and performance is shown on a simple model problem where the hyperelastic strain energy density function is chosen in polynomial form.

Experimental Study on the Effect of Coupled Motions on the Sloshing in Rectangular Tank

  • Woo, Bong-K.;Kwon, Young-S.;Jo, Chul-H.;Seo, Hyun-W.
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.1
    • /
    • pp.29-35
    • /
    • 2003
  • Intensive experimental investigation has been conducted on the characteristics of model tank with intruded flow. The remaining flow inside tank contribute to the dynamic behavior and further closely related to the stability of vessel as well. To understand the importance of the trapped flow and its dynamic effects a series of systematic tests were conducted using a bench tester that could generate periodic roll motion and also complex motions of combined roll-heave-sway. To accommodate experimental conditions and to create three degree freedom of motions, a bench tester was fabricated and verified. Having similarities in terms of flow trapped inside tank, theoretical approaches for A.R.T. were applied to the study. The major parameters including roll angle, period and flow height were varied in the experiments to obtain the characteristics of model tank.

Comparative Molecular Field Analysis of Pyrrolopyrimidines as LRRK2 Kinase Inhibitors

  • Balupuri, Anand;Balasubramanian, Pavithra K.;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Leucine rich repeat kinase 2 (LRRK2) is a highly promising target for Parkinson's disease (PD) that affects millions of people worldwide. A three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was performed on a series of pyrrolopyrimidine-based selective LRRK2 kinase inhibitors. This study was performed to rationalize the structural requirements responsible for the inhibitory activity of these compounds. A reliable 3D-QSAR model was developed using comparative molecular field analysis (CoMFA) technique. The model produced statistically acceptable results with a cross-validated correlation coefficient ($q^2$) of 0.539 and a non-cross-validated correlation coefficient ($r^2$) of 0.871. Robustness of the model was further evaluated by bootstrapping and progressive scrambling analysis. This work could assist in designing more potent LRRK2 inhibitors.