The Kachanov-Rabotnov (K-R) creep model was proposed to accurately model the long-term creep curves above $10^5$ hours of Alloy 617. To this end, a series of creep data was obtained from creep tests conducted under different stress levels at $950^{\circ}C$. Using these data, the creep constants used in the K-R model and the modified K-R model were determined by a nonlinear least square fitting (NLSF) method, respectively. The K-R model yielded poor correspondence with the experimental curves, but the modified K-R model provided good agreement with the curves. Log-log plots of ${\varepsilon}^{\ast}$-stress and ${\varepsilon}^{\ast}$-time to rupture showed good linear relationships. Constants in the modified K-R model were obtained as ${\lambda}$=2.78, and $k=1.24$, and they showed behavior close to stress independency. Using these constants, long-term creep curves above $10^5$ hours obtained from short-term creep data can be modeled by implementing the modified K-R model.
International Journal of Naval Architecture and Ocean Engineering
/
v.13
no.1
/
pp.433-449
/
2021
In this study, a newly enhanced Fluid-Structure Interaction (FSI) model which incorporates mooring lines was used to simulate a floating structure. The model has two parts: a Computational Fluid Dynamics (CFD) model and a mooring model. The open-source CFD OpenFOAM® v1712 toolbox was used in the present study, and the convergence criteria and relaxation method were added to the computational procedure used for the OpenFOAM multiphase flow solver, interDyMFoam. A newly enhanced, tightly coupled solver, CoupledinterDyMFoam, was used to decrease the artificial added mass effect, and the results were validated through a series of benchmark cases. The mooring model, based on the finite element method, was established in MATLAB® and was validated against a benchmark analytical elastic catenary solution and numerical results. Finally, a model which simulates a floating structure with mooring lines was successfully constructed by connecting the mooring model to CoupledinterDyMFoam.
International Journal of Computer Science & Network Security
/
v.22
no.10
/
pp.177-182
/
2022
Technology is progressing with every passing day and the enormous usage of electricity is becoming a necessity. One of the techniques to enjoy the assistances in a smart home is the efficiency to manage the electric energy. When electric energy is managed in an appropriate way, it drastically saves sufficient power even to be spent during hard time as when hit by natural calamities. To accomplish this, prediction of energy consumption plays a very important role. This proposed prediction model Coherent Weighted K-Means Clustering ARIMA (CWKMCA) enhances the weighted k-means clustering technique by adding weights to the cluster points. Forecasting is done using the ARIMA model based on the centroid of the clusters produced. The dataset for this proposed work is taken from the Pecan Project in Texas, USA. The level of accuracy of this model is compared with the traditional ARIMA model and the Weighted K-Means Clustering ARIMA Model. When predicting,errors such as RMSE, MAPE, AIC and AICC are analysed, the results of this suggested work reveal lower values than the ARIMA and Weighted K-Means Clustering ARIMA models. This model also has a greater loglikelihood, demonstrating that this model outperforms the ARIMA model for time series forecasting.
An increase In traffic has a large Influence on the performance of a total network. Therefore, traffic management has become an important issue of network management. In this paper, we propose a new routing algorithm that attempts to analyze network conditions using time series prediction models and to propose predictive optimal routing decisions. Traffic congestion is assumed when the predicting result is bigger than the permitted bandwidth. By collecting traffic in real network, the predictable model is obtained when it minimizes statistical errors. In order to predict network traffic based on time series models, we assume that models satisfy a stationary assumption. The stationary assumption can be evaluated by using ACF(Auto Correlation Function) and PACF(Partial Auto Correlation Function). We can obtain the result of these two functions when it satisfies the stationary assumption. We modify routing oaths by predicting traffic in order to avoid traffic congestion through experiments. As a result, Predicting traffic and balancing load by modifying paths allows us to avoid path congestion and increase network performance.
Value at Risk(VaR) is being widely used as a simple tool for measuring financial risk. Although VaR has a few weak points, it is used as a basic risk measure due to its simplicity and easiness of understanding. However, it becomes very difficult to estimate the volatility of the portfolio (essential to compute its VaR) when the number of assets in the portfolio is large. In this case, we can consider the application of a dimension reduction technique; however, the ordinary factor analysis cannot be applied directly to financial data due to autocorrelation. In this paper, we suggest a dimension reduction method that uses the time-series factor analysis and DCC(Dynamic Conditional Correlation) GARCH model. We also compare the method using time-series factor analysis with the existing method using ordinary factor analysis by backtesting the VaR of real data from the Korean stock market.
Ali, Muhammad Saqib;Bae, Hyun-Su;Lee, Seong-Jun;Cho, Bo-Hyung
Journal of Power Electronics
/
v.11
no.6
/
pp.870-879
/
2011
Regulated peak power tracking (RPPT) systems such as the series structure and the series-parallel structures are commonly used in satellite space power systems. However, these structures process the solar array power or the battery power to the load through two cascaded regulators during one orbit cycle, which reduces the energy transfer efficiency. Also the battery charging time is increased due to placement of converter between the battery and the solar array. In this paper a parallel structure has been proposed which can improve the energy transfer efficiency and the battery charging time for satellite space power RPPT systems. An analogue controller is used to control all of the required functions, such as load voltage regulation and solar array stabilization with maximum power point tracking (MPPT). In order to compare the system efficiency and the battery charging efficiency of the proposed structure with those of a series (conventional) structure and a simplified series-parallel structure, simulations are performed and the results are analyzed using a loss analysis model. The proposed structure charges the battery more quickly when compared to the other two structures. Also the efficiency of the proposed structure has been improved under different modes of solar array operation when compared with the other two structures. To verify the system, experiments are carried out under different modes of solar array operation, including PPT charge, battery discharge, and eclipse and trickle charge.
Journal of the Society of Naval Architects of Korea
/
v.58
no.5
/
pp.281-293
/
2021
Oil and steel prices, which are major pricescosts in the shipbuilding industry, were predicted. Firstly, the error of the moving average line (N=3-5) was examined, and in all three error analyses, the moving average line (N=3) was small. Secondly, in the linear prediction of data through existing theory, oil prices rise slightly, and steel prices rise sharply, but in reality, linear prediction using existing data was not satisfactory. Thirdly, we identified the limitations of linear prediction methods and confirmed that oil and steel price prediction was somewhat similar to actual moving average line prediction methods. Due to the high volatility of major price flows, large errors were inevitable in the forecast section. Through the time series analysis method at the end of this paper, we were able to achieve not bad results in all analysis items relative to artificial intelligence (Prophet). Predictive data through predictive analysis using eight predictive models are expected to serve as a good research foundation for developing unique tools or establishing evaluation systems in the future. This study compares the basic settings of artificial intelligence programs with the results of core price prediction in the shipbuilding industry through time series prediction theory, and further studies the various hyper-parameters and event effects of Prophet in the future, leaving room for improvement of predictability.
Purpose The study aims to predict real estate prices by utilizing regional characteristics. Since real estate has the characteristic of immobility, the characteristics of a region have a great influence on the price of real estate. In addition, real estate prices are closely related to economic development and are a major concern for policy makers and investors. Accurate house price forecasting is necessary to prepare for the impact of house price fluctuations. To improve the performance of our predictive models, we applied LSTM, a widely used deep learning technique for predicting time series data. Design/methodology/approach This study used time series data on real estate prices provided by the Ministry of Land, Infrastructure and Transport. For time series data preprocessing, HP filters were applied to decompose trends and SOM was used to cluster regions with similar price directions. To build a real estate price prediction model, SVR and LSTM were applied, and the prices of regions classified into similar clusters by SOM were used as input variables. Findings The clustering results showed that the region of the same cluster was geographically close, and it was possible to confirm the characteristics of being classified as the same cluster even if there was a price level and a similar industry group. As a result of predicting real estate prices in 1, 2, and 3 months, LSTM showed better predictive performance than SVR, and LSTM showed better predictive performance in long-term forecasting 3 months later than in 1-month short-term forecasting.
Dae Eop Lee;Min Seok Kim;Jin Hyeog Park;Yeon Su Kim;Wan Sik Yu
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.342-342
/
2023
메콩강을 공유하는 6개국은 주로 강의 개발과 수자원의 활용을 통해 경제성장을 이룩하고 있다. 하지만, 각국의 산업화나 경제성장의 수준, 메콩강에 대한 의존도와 관심, 전략 등이 서로 달라 개발에 따른 국가 간 수자원 공유, 환경피해, 지역보존 등의 문제들이 발생하고 있다. 메콩지역의 국가 중 베트남은 하천유역의 많은 부분이 국가공유하천으로 인접국가의 유역개발에 따라 다양한 물 분쟁이 발생할 수 있으며, 잦은 홍수피해가 발생하고, 낙후된 사회인프라로 인해 이수 및 수질오염과 관련된 물 문제 역시 지역적으로 발생하고 있다. 해당지역의 물 문제해결을 위한 정책결정의 지원을 위해서는 수리·수문학적 기초 또는 상세 분석이 필요하며, 본 연구에서는 매년 홍수와 대규모 범람, 비효율적 댐운영으로 인한 가뭄, 염수침입 등의 물 문제가 발생하는 Ca River 유역을 대상유역으로 선정하고 K-series SW 기반의 홍수범람 해석을 수행하였다. K-water에서 개발된 다양한 K-Series SW 중 연구대상유역인 Ca River 하류 유역에 대한 적용에 적합한 모형을 기존 현황조사 등을 바탕으로 1차원 하천흐름해석을 위한 K-River, 2차원 홍수범람해석을 위한 K-Flood 모형을 선정하고 분석을 수행하였다. 2010년과 2013년의 홍수기를 대상으로 K-River모형을 이용하여 Ca river 하류의 수리학적 현상을 해석하였으며, 해당 결과를 기반으로 K-Flood 모형을 이용한 2차원 홍수범람해석을 수행하고 실제 범람지도와의 비교를 수행하였다. 그리고 결과검토를 통해 모의 결과가 수위에 대해 높은 재현성을 보이고 있으며 범람면적과 침수심의 모의결과가 실제 침수양상과 비슷한 양상을 보임을 확인하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.518-520
/
2021
In this paper, we propose a hand gesture recognition method by modifying the textNAS used for text classification so that it can be applied to multivariate time series data. It can be applied to various fields such as behavior recognition, emotion recognition, and hand gesture recognition through multivariate time series data classification. In addition, it automatically finds a deep learning model suitable for classification through training, thereby reducing the burden on users and obtaining high-performance class classification accuracy. By applying the proposed method to the DHG-14/28 and Shrec'17 datasets, which are hand gesture recognition datasets, it was possible to obtain higher class classification accuracy than the existing models. The classification accuracy was 98.72% and 98.16% for DHG-14/28, and 97.82% and 98.39% for Shrec'17 14 class/28 class.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.