• Title/Summary/Keyword: series connection of output terminal

Search Result 4, Processing Time 0.032 seconds

Single-Phase Series Type Quasi Z-Source Voltage Sag-Swell Compensator for Voltage Compensation of Entire Region (전 영역의 전압보상을 위한 단상 직렬형 Quasi Z-소스 전압 Sag-Swell 보상기)

  • Eom, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.322-332
    • /
    • 2013
  • Conventional single-phase series quasi Z-source voltage compensator can not compensate for voltage sag less than 50% that frequently occurs in the industrial field. In this study, single-phase series quasi Z-source voltage sag-swell compensator which can compensate the voltage variation of entire range is proposed. The proposed system is composed of two quasi Z-source AC-AC converters connected in series with output terminal stage. Voltage sag less than 50% could be compensated by the intersection switching control of the upper converter duty ratio and of the upper converter duty ratio. Also the compensation voltage and its flowchart for each compensation mode are presented for entire sag-swell region. To confirm the validity of the proposed system, a DSP(DSP28335) controlled experimental system was manufactured. As a result, the proposed system could compensate for the voltage sag/swell of 20% and 60%. Finally, voltage compensation factor and THD(Total Harmonic Distortion) according to voltage variation and load change were measured, and voltage quality shows a good results.

Switching Characteristics Analysis of Bypass SCR for Series Transformer in 3-phase Voltage Disturbance Generator (3상 전압변동발생기의 직렬변압기 바이패스용 SCR의 스위칭 특성해석)

  • Song, W.H.;Park, H.Y.;Nho, E.C.;Kim, I.D.;Kim, H.G.;Chun, T.W.
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.71-72
    • /
    • 2010
  • This paper deals with the SCR thyristor switching characteristics of a 3-phase voltage disturbance generator. The series transformers of the generator require bypass SCR thyristors to provide the source voltage to the output terminal in normal operating mode. The SCR thyristor switching characteristics is quite different according to the connection point to the series transformer. The switching characteristics is analysed and verified through simulation results.

  • PDF

Switching Characteristics Analysis of Bypass SCR for Series Transformer in 3-phase Voltage Disturbance Generator (3상 전압변동발생기의 직렬변압기 바이패스용 SCR의 스위칭 특성해석)

  • Song, W.H.;Park, H.Y.;Nho, E.C.;Kim, I.D.;Kim, H.G.;Chun, T.W.
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.532-533
    • /
    • 2010
  • This paper deals with the SCR thyristor switching characteristics of a 3-phase voltage disturbance generator. The series transformers of the generator require bypass SCR thyristors to provide the source voltage to the output terminal in normal operating mode. The SCR thyristor switching characteristics is quite different according to the connection point to the series transformer. The switching characteristics is analysed and verified through simulation results.

  • PDF

The Sugge Voltage restraint of induction motor using low-loss snubber circuit (저손실 스너버 회로를 이용한 유도전동기의 서지전압 억제)

  • Cho, Man-Chul;Mun, Sang-Pil;Kim, Chil-Yong;Kim, Ju-Yong;Shu, Ki-Young;Kwon, Soon-Kurl
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.473-477
    • /
    • 2007
  • The development of advanced Insulated Gate Bipolar Transistor(IGBT)has enabled high-frequency switching operation and has improved the performance of PWM inverters for motor drive. However, the high rate of dv/dt of IGBT has adverse effects on motor insulation stress. In many motor drive applications, the inverter and motor are separated and it requires long motor feds. The long cable contributes high frequency ringing at the motor terminal and it results in hight surge voltage which stresses the motor insulation. The inverter output filter and RDC snubber are conventional method which can reduce the surge voltage. In this paper, we propose the new low loss snubber to reduce the motor terminal surge voltage. The snubber consists of the series connection of charging/discharging capacitor and the voltage-clamped capacitor. At IGBT turn-off, the snubber starts to operate when the IGBT voltage reaches the voltage-clamped level. Since dv/dt is decreased by snubber operating, the peak level of the surge voltage can be reduced. Also the snubber operates at the IGBT voltage above the voltage-clamped level, the snubber loss is largely reduced comparing with RDC snubber. The proposed snubber enables to reduce the motor terminal surge voltage with low loss.

  • PDF