• Title/Summary/Keyword: sericin/chitosan blended film

Search Result 2, Processing Time 0.019 seconds

Mechanical Properties of Cellulose/Chitosan and Sericin/Chitosan Blend Films (셀룰로오스/키토산 및 세리신/키토산 복합화필름의 역학특성)

  • Yoon Heung Soo;Lee Eui So;Kim Seung Il;Yoon Ho Gyu;Takahashi Kiyohisa
    • Textile Coloration and Finishing
    • /
    • v.17 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • The tensile properties, acetic acid solubility and degree of swelling in distilled water of cellulose/chitosan and sericin/chitosan film blended by mixing chitosan acetic acid solution with cellulose solution or sericin solution were investigated and the effect of crosslinking agent on solubility and degree of swelling were also considered. From the experimental results, the model of intermolecular bond is proposed. Tensile modulus of 100% cellulose film is high but the tensile strength and elongation are low. The elongation of 100% chitosan film is high but tensile modulus and strength is low. But it is possible to make film having same or higher tensile strength and modulus compared to that of 100% cellulose film by mixing cellulose and chitosan or by mixing sericin and chitosan. Chitosan is solved in 5vol % acetic acid solution but cellulose and sericin are not solved. Degree of swelling of chitosan in distilled water is higher than that of cellulose and sericin. Lower than 40wt% chitosan content, the solubility of cellulose/chitosan film in 5vol % acetic acid solution shows lower expected value but higher in case of sericin/chitosan film.

Separation Performance and Application of Sericin Protein in Silk Degumming Solution(2) (실크 정련 세리신 단백질의 분리특성과 응용(2))

  • Cha, Chin-U;Park, In-Woo;Bae, Kie-Seo;Hong, Young-Ki;Lee, Seo-Hee;Kim, Yong-Duck
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.132-139
    • /
    • 2010
  • Sericin pulverization process was applied by freezing-thawing of sericin protein concentration solution and physicochemical properties of sericin/chitosan blended films were investigated. In sericin pulverization process by freezing-thawing method, the refrigeration storage at $4^{\circ}C$ maximized gelling between sericin molecules, which increased 10% of recovery ratio from sericin concentration solution that using ultrafiltration procedure. In physicochemical properties of sericin/chitosan blended films, the maximum load of chitosan (6.7kgf) had higher than that of sericin (1.2kgf), and the elongation of sericin and chitosan had 96% and 34%, respectively. Also FT-IR analysis of sericin/chitosan blended films showed that both sericin and chitosan films had amide I peak (N-H bond) in $1,521cm^{-1}$ and amide II peak (C=O bond) in $1,630cm^{-1}$. In addition, it could confirm compatibility between both materials as indicated by the decrease in the amide I peak's absorption value as chitosan content increases.