• Title/Summary/Keyword: sequentially linear analysis

Search Result 26, Processing Time 0.022 seconds

Incremental Linear Discriminant Analysis for Streaming Data Using the Minimum Squared Error Solution (스트리밍 데이터에 대한 최소제곱오차해를 통한 점층적 선형 판별 분석 기법)

  • Lee, Gyeong-Hoon;Park, Cheong Hee
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.69-75
    • /
    • 2018
  • In the streaming data where data samples arrive sequentially in time, it is difficult to apply the dimension reduction method based on batch learning. Therefore an incremental dimension reduction method for the application to streaming data has been studied. In this paper, we propose an incremental linear discriminant analysis method using the least squared error solution. Instead of computing scatter matrices directly, the proposed method incrementally updates the projective direction for dimension reduction by using the information of a new incoming sample. The experimental results demonstrate that the proposed method is more efficient compared with previously proposed incremental dimension reduction methods.

Computation of Two-Fluid Flows with Submerged hydrofoil by Interface Capturing Method (접면포착법에 의한 수중익 주위의 이층류 유동계산)

  • 곽승현
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.167-174
    • /
    • 1999
  • Numerical analysis of two-fluid flows for both water and air is carried out. Free-Surface flows with an arbitrary deformation have been simulated around two dimensional submerged hydrofoil. The computation is performed using a finite volume method with unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell-wise local mesh refinement. the integration in space is of second order based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels The linear equation systems are solved by conjugate gradient type solvers and the non-linearity of equations is accounted for through picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations the continuity equation the conservation equation of one species and the equations or two turbulence quantities.

  • PDF

A Study on Reduction of Computation Time through Adjustment the Frequency Interval Information in the G.723.1 Vocoder (G.723.1 보코더에서 주파수 간격 정보조절을 통한 계산량 감소에 관한 연구)

  • 민소연;김영규;배명진
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.405-408
    • /
    • 2002
  • LSP(Line Spectrum Pairs) Parameter is used for speech analysis in vocoders or recognizers since it has advantages of constant spectrum sensitivity. low spectrum distortion and easy linear interpolation. However the method of transforming LPC(Linear Predictive Coding) into LSP is so complex that it takes much time to compute. Among conventional methods, the real root method is considerably simpler than others, but nevertheless, it still suffers from its jndeterministic computation time because the root searching is processed sequentially in frequency region. We suggest a method of reducing the LSP transformation time using voice characteristics The proposed method is to apply search order and interval differently according to the distribution of LSP parameters. in comparison with the conventional real root method, the proposed method results in about 46.5% reduction. And, the total computation time is reduce to about 5% in the G.723.1 vocoder.

  • PDF

A Reduction Method of Computational Complexity through Adjustment the Non-Uniform Interval in the Vocoder (음성 부호화기에서 불균등 간격조절을 통한 계산량 단축법)

  • Jun, Woo-Jin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.277-280
    • /
    • 2010
  • LSP(Line Spectrum Pairs) Parameter is used for speech analysis in vocoders or recognizers since it has advantages of constant spectrum sensitivity, low spectrum distortion and easy linear interpolation. However the method of transforming LPC(Linear Predictive Coding) into LSP is so complex that it takes much time to compute. Among conventional methods, the real root method is considerably simpler than others, but nevertheless, it still suffers from its indeterministic computation time because the root searching is processed sequentially in frequency region. We suggest a method of reducing the LSP transformation time using voice characteristics.

  • PDF

A Study on ESS Optimal Operation Strategy Using Two Stage Hybrid Optimization (Two Stage Hybrid Optimization을 사용한 ESS 최적 운전 전략에 대한 연구)

  • Gong, Eun-Kyoung;Sohn, Jin-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.833-839
    • /
    • 2018
  • This paper presents an analysis and the methodology of optimal operation strategy of the ESS(Energy Storage System) for reduce electricity charges. Electricity charges consist of a basic charge based on the contract capacity and energy charge according to the power usage. In order to use electrical energy at minimal charge, these two factors are required to be reduced at the same time. QP(Quadratic Programming) is appropriate for minimization of the basic charge and LP(Linear Programmin) is adequate to minimize the energy charge. However, the integer variable have to be introduced for modelling of different charge and discharge efficiency of ESS PCS(Power Conversion System), where MILP(Mixed Integer Linear Programming) can be used. In this case, the extent to which the peak load savings is accomplished should be assumed before the energy charge is minimized. So, to minimize the electricity charge exactly, optimization is sequentially performed in this paper, so-called the Two Stage Hybird optimization, where the extent to which the peak load savings is firstly accomplished through optimization of basic charge and then the optimization of energy charge is performed with different charge and discharge efficiency of ESS PCS. Finally, the proposed method is analyzed quantitatively with other optimization methods.

Assessment of Code-specified Ground Motion Selection Criteria with Accurate Selection and Scaling Methods - I Ground Motion Selection (구조물 동적해석을 위한 현행 내진설계기준의 입력 지반 운동 선정 조건 타당성 평가 - I 선정방법)

  • Ha, Seong Jin;Han, Sang Whan;Ji, Hyun Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.171-179
    • /
    • 2017
  • For estimating the seismic demand of buildings, most seismic design provisions permit conducting linear and nonlinear response history analysis. In order to obtain reliable results from response history analyses, a proper selection of input ground motions is required. In this study, an accurate algorithm for selecting and scaling ground motions is proposed, which satisfies the ASCE 7-10 criteria. In the proposed algorithm, a desired number of ground motions are sequentially scaled and selected from a ground motion library without iterations.

Random Vibration Analysis of Nonlinear Structure System using Perturbation Method

  • Moon, Byung-Young;Kang, Beom-Soo;Kang, Gyung-Ju
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.243-250
    • /
    • 2001
  • Industrial machines are sometimes exposed to the danger of earthquake. In the design of a mechanical system, this factor should be accounted for from the viewpoint of reliability. A method to analyze a complex nonlinear structure system under random excitation is proposed. First, the actual random excitation, such as earthquake, is approximated to the corresponding Gaussian process far the statistical analysis. The modal equations of overall system are expanded sequentially. Then, the perturbed equations are synthesized into the overall system and solved in probabilistic way. Several statistical properties of a random process that are of interest in random vibration applications are reviewed in accordance with nonlinear stochastic problem. The obtained statistical properties of the nonlinear random vibration are evaluated in each substructure. Comparing with the results of the numerical simulation proved the efficiency of the proposed method.

  • PDF

Saw-tooth softening/stiffening - a stable computational procedure for RC structures

  • Rots, Jan G.;Invernizzi, Stefano;Belletti, Beatrice
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.213-233
    • /
    • 2006
  • Over the past years techniques for non-linear analysis have been enhanced significantly via improved solution procedures, extended finite element techniques and increased robustness of constitutive models. Nevertheless, problems remain, especially for real world structures of softening materials like concrete. The softening gives negative stiffness and risk of bifurcations due to multiple cracks that compete to survive. Incremental-iterative techniques have difficulties in selecting and handling the local peaks and snap-backs. In this contribution, an alternative method is proposed. The softening diagram of negative slope is replaced by a saw-tooth diagram of positive slopes. The incremental-iterative Newton method is replaced by a series of linear analyses using a special scaling technique with subsequent stiffness/strength reduction per critical element. It is shown that this event-by-event strategy is robust and reliable. First, the model is shown to be objective with respect to mesh refinement. Next, the example of a large-scale dog-bone specimen in direct tension is analyzed using an isotropic version of the saw-tooth model. The model is capable of automatically providing the snap-back response. Subsequently, the saw-tooth model is extended to include anisotropy for fixed crack directions to accommodate both tensile cracking and compression strut action for reinforced concrete. Three different reinforced concrete structures are analyzed, a tension-pull specimen, a slender beam and a slab. In all cases, the model naturally provides the local peaks and snap-backs associated with the subsequent development of primary cracks starting from the rebar. The secant saw-tooth stiffness is always positive and the analysis always 'converges'. Bifurcations are prevented due to the scaling technique.

Fabrication of Hybrid Films Using Titanium Chloride and 2,4-hexadiyne-1,6-diol by Molecular Layer Deposition

  • Yun, Gwan-Hyeok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.418-418
    • /
    • 2012
  • We fabricated a new type of hybrid film using molecular layer deposition (MLD). The MLD is a gas phase process analogous to atomic layer deposition (ALD) and also relies on a saturated surface reaction sequentially which results in the formation of a monolayer in each sequence. In the MLD process, polydiacetylene (PDA) layers were grown by repeated sequential surface reactions of titanium tetrachloride and 2,4-hexadiyne-1,6-diol with ultraviolet (UV) polymerization under a substrate temperature of $100^{\circ}C$. Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of the hybrid films. Polymerization of the hybrid films was confirmed by infrared (IR) spectroscopy and UV-Vis spectroscopy. Composition of the films was confirmed by IR spectroscopy and X-ray photoelectron (XP) spectroscopy. The titanium oxide cross-linked polydiacetylene (TiOPDA) hybrid films exhibited good thermal and mechanical stabilities.

  • PDF

A Study on Recognition of Both of New & Old Types of Vehicle Plate (신, 구 차량 번호판 통합 인식에 관한 연구)

  • Han, Kun-Young;Woo, Young-Woon;Han, Soo-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.1987-1996
    • /
    • 2009
  • Recently, the color of vehicle license plate has been changed from green to white. Thus the vehicle plate recognition system used for parking management systems, speed and signal violation detection systems should be robust to the both colors. This paper presents a vehicle license plate recognition system, which works on both of green and white plate at the same time. In the proposed system, the image of license plate is taken from a captured vehicle image by using morphological information. In the next, each character region in the license plate image is extracted based on the vertical and horizontal projection of plate image and the relative position of individual characters. Finally, for the recognition process of extracted characters, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis) are sequentially utilized. In the experiment, vehicle license plates of both green background and white background captured under irregular illumination conditions have been tested, and the relatively high extraction and recognition rates are observed.