• 제목/요약/키워드: sequential pattern

검색결과 362건 처리시간 0.021초

WIS: Weighted Interesting Sequential Pattern Mining with a Similar Level of Support and/or Weight

  • Yun, Un-Il
    • ETRI Journal
    • /
    • 제29권3호
    • /
    • pp.336-352
    • /
    • 2007
  • Sequential pattern mining has become an essential task with broad applications. Most sequential pattern mining algorithms use a minimum support threshold to prune the combinatorial search space. This strategy provides basic pruning; however, it cannot mine correlated sequential patterns with similar support and/or weight levels. If the minimum support is low, many spurious patterns having items with different support levels are found; if the minimum support is high, meaningful sequential patterns with low support levels may be missed. We present a new algorithm, weighted interesting sequential (WIS) pattern mining based on a pattern growth method in which new measures, sequential s-confidence and w-confidence, are suggested. Using these measures, weighted interesting sequential patterns with similar levels of support and/or weight are mined. The WIS algorithm gives a balance between the measures of support and weight, and considers correlation between items within sequential patterns. A performance analysis shows that WIS is efficient and scalable in weighted sequential pattern mining.

  • PDF

Tree-based Navigation Pattern Analysis

  • Choi, Hyun-Jip
    • Communications for Statistical Applications and Methods
    • /
    • 제8권1호
    • /
    • pp.271-279
    • /
    • 2001
  • Sequential pattern discovery is one of main interests in web usage mining. the technique of sequential pattern discovery attempts to find inter-session patterns such that the presence of a set of items is followed by another item in a time-ordered set of server sessions. In this paper, a tree-based sequential pattern finding method is proposed in order to discover navigation patterns in server sessions. At each learning process, the suggested method learns about the navigation patterns per server session and summarized into the modified Rymon's tree.

  • PDF

A Novel Approach for Mining High-Utility Sequential Patterns in Sequence Databases

  • Ahmed, Chowdhury Farhan;Tanbeer, Syed Khairuzzaman;Jeong, Byeong-Soo
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.676-686
    • /
    • 2010
  • Mining sequential patterns is an important research issue in data mining and knowledge discovery with broad applications. However, the existing sequential pattern mining approaches consider only binary frequency values of items in sequences and equal importance/significance values of distinct items. Therefore, they are not applicable to actually represent many real-world scenarios. In this paper, we propose a novel framework for mining high-utility sequential patterns for more real-life applicable information extraction from sequence databases with non-binary frequency values of items in sequences and different importance/significance values for distinct items. Moreover, for mining high-utility sequential patterns, we propose two new algorithms: UtilityLevel is a high-utility sequential pattern mining with a level-wise candidate generation approach, and UtilitySpan is a high-utility sequential pattern mining with a pattern growth approach. Extensive performance analyses show that our algorithms are very efficient and scalable for mining high-utility sequential patterns.

IMPLEMENTATION OF SUBSEQUENCE MAPPING METHOD FOR SEQUENTIAL PATTERN MINING

  • Trang, Nguyen Thu;Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.627-630
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

  • PDF

Implementation of Subsequence Mapping Method for Sequential Pattern Mining

  • Trang Nguyen Thu;Lee Bum-Ju;Lee Heon-Gyu;Park Jeong-Seok;Ryu Keun-Ho
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.457-462
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

맵리듀스 프레임웍 상에서 맵리듀스 함수 호출을 최적화하는 순차 패턴 마이닝 기법 (Sequential Pattern Mining with Optimization Calling MapReduce Function on MapReduce Framework)

  • 김진현;심규석
    • 정보처리학회논문지D
    • /
    • 제18D권2호
    • /
    • pp.81-88
    • /
    • 2011
  • 시퀀스(sequence) 데이터가 주어졌을 때 그 중에서 빈번(frequent)한 순차 패턴을 찾는 순차 패턴 마이닝(sequential pattern mining)은 여러 어플리케이션(application)에 사용되는 중요한 데이터마이닝 문제이다. 순차 패턴 마이닝은 웹 접속 패턴, 고객 구매 패턴, 특정 질병의 DNA 시퀀스를 찾는 등 광범위한 분야에서 사용된다. 본 논문에서는 맵리듀스(MapReduce) 프레임웍 상에서 맵리듀스 함수 호출을 최적화하는 순차 패턴 마이닝 알고리즘을 개발하였다. 이 알고리즘은 여러 대의 기계에 데이터들을 분산시켜 병렬적으로 빈번한 순차 패턴을 찾는다. 실험적으로 다양한 데이터를 이용하여 파라미터 값을 변화시켜가며 제안된 알고리즘의 성능을 종합적으로 확인하였다. 그리고 실험 결과를 통해 제안된 알고리즘은 기계 수에 대해 선형적인 속도 개선을 보인다는 것을 확인하였다.

발생 간격 기반 가중치 부여 기법을 활용한 데이터 스트림에서 가중치 순차패턴 탐색 (Finding Weighted Sequential Patterns over Data Streams via a Gap-based Weighting Approach)

  • 장중혁
    • 지능정보연구
    • /
    • 제16권3호
    • /
    • pp.55-75
    • /
    • 2010
  • 일반적인 순차패턴 마이닝에서는 분석 대상 데이터 집합에 포함되는 구성요소의 발생 순서만을 고려하며, 따라서 단순 순차패턴은 쉽게 찾을 수 있는 반면 실제 응용 분야에서 널리 활용될 수 있는 관심도가 큰 순차패턴을 탐색하는데 한계가 있다. 이러한 단점을 보완하기 위한 대표적인 연구 주제들 중의 하나가 가중치 순차패턴 탐색이다. 가중치 순차패턴 탐색에서는 관심도가 큰 순차패턴을 얻기 위해서 구성요소의 단순 발생 순서 뿐만 아니라 구성요소의 가중치를 추가로 고려한다. 본 논문에서는 발생 간격에 기반 한 순차패턴 가중치 부여 기법 및 이를 활용한 순차 데이터 스트림에 대한 가중치 순차패턴 탐색 방법을 제안한다. 발생 간격 기반 가중치는 사전에 정의된 별도의 가중치 정보를 필요로 하지 않으며 순차정보를 구성하는 구성요소들의 발생 간격으로부터 구해진다. 즉, 순차패턴의 가중치를 구하는데 있어서 구성요소의 발생순서와 더불어 이들의 발생 간격을 고려하며, 따라서 보다 관심도가 크고 유용한 순차패턴을 얻는데 도움이 된다. 한편, 근래 대부분의 컴퓨터 응용 분야에서는 한정적인 데이터 집합 형태가 아닌 데이터 스트림 형태로 정보를 발생시키고 있다. 이와 같은 데이터 생성 환경의 변화를 고려하여 본 논문에서는 순차 데이터 스트림을 마이닝 대상으로 고려하였다.

A Fusion of Data Mining Techniques for Predicting Movement of Mobile Users

  • Duong, Thuy Van T.;Tran, Dinh Que
    • Journal of Communications and Networks
    • /
    • 제17권6호
    • /
    • pp.568-581
    • /
    • 2015
  • Predicting locations of users with portable devices such as IP phones, smart-phones, iPads and iPods in public wireless local area networks (WLANs) plays a crucial role in location management and network resource allocation. Many techniques in machine learning and data mining, such as sequential pattern mining and clustering, have been widely used. However, these approaches have two deficiencies. First, because they are based on profiles of individual mobility behaviors, a sequential pattern technique may fail to predict new users or users with movement on novel paths. Second, using similar mobility behaviors in a cluster for predicting the movement of users may cause significant degradation in accuracy owing to indistinguishable regular movement and random movement. In this paper, we propose a novel fusion technique that utilizes mobility rules discovered from multiple similar users by combining clustering and sequential pattern mining. The proposed technique with two algorithms, named the clustering-based-sequential-pattern-mining (CSPM) and sequential-pattern-mining-based-clustering (SPMC), can deal with the lack of information in a personal profile and avoid some noise due to random movements by users. Experimental results show that our approach outperforms existing approaches in terms of efficiency and prediction accuracy.

Sequential pattern load modeling and warning-system plan in modular falsework

  • Peng, Jui-Lin;Wu, Cheng-Lung;Chan, Siu-Lai
    • Structural Engineering and Mechanics
    • /
    • 제16권4호
    • /
    • pp.441-468
    • /
    • 2003
  • This paper investigates the structural behavior of modular falsework system under sequential pattern loads. Based on the studies of 25 construction sites, the pattern load sequence modeling is defined as models R (rectangle), L and U. The study focuses on the system critical loads, regions of largest reaction forces, discrepancy between the pattern load and the uniform load, and the warning-system plan. The analysis results show that the critical loads of modular falsework systems with sequential pattern loads are very close to those with the uniform load used in design. The regions of largest reaction forces are smaller than those calculated by the uniform load. However, the regions of largest reaction forces of three models under sequential pattern loads can be considered as the crucial positions of warning-system based on the measured index of loading. The positions of the sensors for the warning-system for these three different models are not identical.

근사 알고리즘을 이용한 순차패턴 탐색 (Searching Sequential Patterns by Approximation Algorithm)

  • 산사볼트가람라흐차;황영섭
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.29-36
    • /
    • 2009
  • 서열데이터베이스에 있는 자주 발현하는 부분 서열을 패턴으로 찾아내는 순차패턴 탐색은 넓은 응용 분야를 가지는 중요한 데이터 마이닝 문제이다. DNA 서열에서 순차패턴이 모티프가 될 수 있으므로 DNA 서열에서 순차패턴을 찾는 것을 연구하였다. 대부분의 기존 마이닝 방법은 순차패턴의 정의에 따라 정확한 정합에 주력하여 노이즈가 있는 환경이나 실제 문제에서 발생하는 부정확한 데이터에 대하여 제대로 작동하지 않을 수 있다. 이러한 문제가 생물 데이터인 DNA 서열에서 자주 나타난다. 이러한 문제를 다루기 위한 근사 정합 방법을 연구하였다. 본 연구의 아이디어는 자주 발생하는 패턴을 근사 패턴이라 부르는 그룹으로 분류할 수 있다는 관찰에서 기반을 둔다. 기존의 Prefixspan 알고리즘은 주어진 긴 서열에서 순차패턴을 잘 찾을 수 있다. 본 연구는 Prefixspan 알고리즘을 개선하여 유사한 순차패턴을 찾을 수 있게 하였다. 실험 결과는 PreFixSpan보다 제안한 방법이 패턴 길이가 4일 때, 근사 순차패턴의 빈도가 5배 높아짐을 보였다.