• Title/Summary/Keyword: sequential detection

Search Result 261, Processing Time 0.022 seconds

Detection of API(Anomaly Process Instance) Based on Distance for Process Mining (프로세스 마이닝을 위한 거리 기반의 API(Anomaly Process Instance) 탐지법)

  • Jeon, Daeuk;Bae, Hyerim
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.6
    • /
    • pp.540-550
    • /
    • 2015
  • There have been many attempts to find knowledge from data using conventional statistics, data mining, artificial intelligence, machine learning and pattern recognition. In those research areas, knowledge is approached in two ways. Firstly, researchers discover knowledge represented in general features for universal recognition, and secondly, they discover exceptional and distinctive features. In process mining, an instance is sequential information bounded by case ID, known as process instance. Here, an exceptional process instance can cause a problem in the analysis and discovery algorithm. Hence, in this paper we develop a method to detect the knowledge of exceptional and distinctive features when performing process mining. We propose a method for anomaly detection named Distance-based Anomaly Process Instance Detection (DAPID) which utilizes distance between process instances. DAPID contributes to a discovery of distinctive characteristic of process instance. For verifying the suggested methodology, we discovered characteristics of exceptional situations from log data. Additionally, we experiment on real data from a domestic port terminal to demonstrate our proposed methodology.

Video Based Face Spoofing Detection Using Fourier Transform and Dense-SIFT (푸리에 변환과 Dense-SIFT를 이용한 비디오 기반 Face Spoofing 검출)

  • Han, Hotaek;Park, Unsang
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.483-486
    • /
    • 2015
  • Security systems that use face recognition are vulnerable to spoofing attacks where unauthorized individuals use a photo or video of authorized users. In this work, we propose a method to detect a face spoofing attack with a video of an authorized person. The proposed method uses three sequential frames in the video to extract features by using Fourier Transform and Dense-SIFT filter. Then, classification is completed with a Support Vector Machine (SVM). Experimental results with a database of 200 valid and 200 spoof video clips showed 99% detection accuracy. The proposed method uses simplified features that require fewer memory and computational overhead while showing a high spoofing detection accuracy.

Modified Adaptive Gaussian Filter for Removal of Salt and Pepper Noise

  • Li, Zuoyong;Tang, Kezong;Cheng, Yong;Chen, Xiaobo;Zhou, Chongbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2928-2947
    • /
    • 2015
  • Adaptive Gaussian filter (AGF) is a recently developed switching filter to remove salt and pepper noise. AGF first directly identifies pixels of gray levels 0 and 255 as noise pixels, and then only restored noise pixels using a Gaussian filter with adaptive variance based on the estimated noise density. AGF usually achieves better denoising effect in comparison with other filters. However, AGF still fails to obtain good denoising effect on images with noise-free pixels of gray levels 0 and 255, due to its severe false alarm in its noise detection stage. To alleviate this issue, a modified version of AGF is proposed in this paper. Specifically, the proposed filter first performs noise detection via an image block based noise density estimation and sequential noise density guided rectification on the noise detection result of AGF. Then, a modified Gaussian filter with adaptive variance and window size is used to restore the detected noise pixels. The proposed filter has been extensively evaluated on two representative grayscale images and the Berkeley image dataset BSDS300 with 300 images. Experimental results showed that the proposed filter achieved better denoising effect over the state-of-the-art filters, especially on images with noise-free pixels of gray levels 0 and 255.

Online abnormal events detection with online support vector machine (온라인 서포트벡터기계를 이용한 온라인 비정상 사건 탐지)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.197-206
    • /
    • 2011
  • The ability to detect online abnormal events in signals is essential in many real-world signal processing applications. In order to detect abnormal events, previously known algorithms require an explicit signal statistical model, and interpret abnormal events as statistical model abrupt changes. In general, maximum likelihood and Bayesian estimation theory to estimate well as detection methods have been used. However, the above-mentioned methods for robust and tractable model, it is not easy to estimate. More freedom to estimate how the model is needed. In this paper, we investigate a machine learning, descriptor-based approach that does not require a explicit descriptors statistical model, based on support vector machines are known to be robust statistical models and a sequential optimal algorithm online support vector machine is introduced.

A Methodology for Partitioning a Search Area to Allocate Multiple Platforms (구역분할 알고리즘을 이용한 다수 탐색플랫폼의 구역할당 방법)

  • An, Woosun;Cho, Younchol;Lee, Chansun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.225-234
    • /
    • 2018
  • In this paper, we consider a problem of partitioning a search area into smaller rectangular regions, so that multiple platforms can conduct search operations independently without requiring unnecessary coordination among themselves. The search area consists of cells where each cell has some prior information regarding the probability of target existence. The detection probability in particular cell is evaluated by multiplying the observation probability of the platform and the target existence probability in that cell. The total detection probability within the search area is defined as the cumulative detection probability for each cell. However, since this search area partitioning problem is NP-Hard, we decompose the problem into three sequential phases to solve this computationally intractable problem. Additionally, we discuss a special case of this problem, which can provide an optimal analytic solution. We also examine the performance of the proposed approach by comparing our results with the optimal analytic solution.

Fast Cooperative Sensing with Low Overhead in Cognitive Radios

  • Dai, Zeyang;Liu, Jian;Li, Yunji;Long, Keping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.58-73
    • /
    • 2014
  • As is well known, cooperative sensing can significantly improve the sensing accuracy as compared to local sensing in cognitive radio networks (CRNs). However, a large number of cooperative secondary users (SUs) reporting their local detection results to the fusion center (FC) would cause much overhead, such as sensing delay and energy consumption. In this paper, we propose a fast cooperative sensing scheme, called double threshold fusion (DTF), to reduce the sensing overhead while satisfying a given sensing accuracy requirement. In DTF, FC respectively compares the number of successfully received local decisions and that of failed receptions with two different thresholds to make a final decision in each reporting sub-slot during a sensing process, where cooperative SUs sequentially report their local decisions in a selective fashion to reduce the reporting overhead. By jointly considering sequential detection and selective reporting techniques in DTF, the overhead of cooperative sensing can be significantly reduced. Besides, we study the performance optimization problems with different objectives for DTF and develop three optimum fusion rules accordingly. Simulation results reveal that DTF shows evident performance gains over an existing scheme.

Host Anomaly Detection of Neural Networks and Neural-fuzzy Techniques with Soundex Algorithm (사운덱스 알고리즘을 적용한 신경망라 뉴로-처지 기법의 호스트 이상 탐지)

  • Cha, Byung-Rae;Kim, Hyung-Jong;Park, Bong-Gu;Cho, Hyug-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.13-22
    • /
    • 2005
  • To improve the anomaly IDS using system calls, this study focuses on Neural Networks Learning using the Soundex algorithm which is designed to change feature selection and variable length data into a fixed length learning pattern. That is, by changing variable length sequential system call data into a fixed length behavior pattern using the Soundex algorithm, this study conducted neural networks learning by using a backpropagation algorithm with fuzzy membership function. The back-propagation neural networks and Neuro-Fuzzy technique are applied for anomaly intrusion detection of system calls using Sendmail Data of UNM to demonstrate its aspect of he complexity of time, space and MDL performance.

A Study on the Event Processing for Electronic Control (전자제어의 Event 처리방법에 관한 연구)

  • 이종승;이중순;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.115-122
    • /
    • 1998
  • For digital engine control timings, such as ignition, are based on the crank shaft angle. Therefore, it is very important that the angle of the crank shaft can be detected with accuracy for optimal ignition timing. Sequential multi-point injection(MPI) systems that have independent injection events for each cylinder, are used to inject an accurate quantity of fuel, and to cope with varying engine status promptly. In this study the distributorless ignition timing. A crankshaft position sensor has been installed such that it generates a number of pulses per crankshaft revolution to permit accurate detection of the crank shaft angle. An event detecting algorithm has been developed, which detects the crank shaft pulses generated by the position sensor, and the software outputs the required control signals at given crank angle values. We clarified that the hardware method is the best way to increase the performance of the control system, because the event detecting duration T(1+2)max becomes zero.

  • PDF

Fast Scene Understanding in Urban Environments for an Autonomous Vehicle equipped with 2D Laser Scanners (무인 자동차의 2차원 레이저 거리 센서를 이용한 도시 환경에서의 빠른 주변 환경 인식 방법)

  • Ahn, Seung-Uk;Choe, Yun-Geun;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.92-100
    • /
    • 2012
  • A map of complex environment can be generated using a robot carrying sensors. However, representation of environments directly using the integration of sensor data tells only spatial existence. In order to execute high-level applications, robots need semantic knowledge of the environments. This research investigates the design of a system for recognizing objects in 3D point clouds of urban environments. The proposed system is decomposed into five steps: sequential LIDAR scan, point classification, ground detection and elimination, segmentation, and object classification. This method could classify the various objects in urban environment, such as cars, trees, buildings, posts, etc. The simple methods minimizing time-consuming process are developed to guarantee real-time performance and to perform data classification on-the-fly as data is being acquired. To evaluate performance of the proposed methods, computation time and recognition rate are analyzed. Experimental results demonstrate that the proposed algorithm has efficiency in fast understanding the semantic knowledge of a dynamic urban environment.

Robust State Feedback Control of Asynchronous Machines with Intermittent Faults (간헐 고장이 존재하는 비동기 머신의 견실한 상태 피드백 제어)

  • Yang, Jung-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • This paper addresses the problem of fault detection and tolerance for asynchronous sequential machines using state feedback control. The considered asynchronous machine is affected by intermittent faults. When intermittent faults occur, the machine undergoes unauthorized state transitions and, for a finite duration, remains at the fault state, not responding to the change of the external input. In this paper, we postulate the scheme of detecting intermittent faults and present the existence condition and design algorithm for a robust state feedback controller that overcomes the adversarial effect of intermittent faults. We also undertake a comparative study between the previous control scheme for transient faults and the present strategy for intermittent faults. The design procedure for the proposed controller is described in a case study.