• Title/Summary/Keyword: sequential data

Search Result 1,105, Processing Time 0.028 seconds

A Study on the Sequential Design Domain for the Approximate Optimum Design (근사 최적설계를 위한 순차 설계영역에 관한 연구)

  • 김정진;이진식;임오강
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.339-348
    • /
    • 2001
  • More often a commercial package for the structural analysis is necessary in the structural optimum design. In this case the task of combining the package with an optimization program must be required, hut it is not so simple because interchanging some data between them is difficult. Sequential approximate optimization is currently used as a natural way to overcome the hard task. If sequential approximate optimization has wide side constraints that the lower limit of design variables is very small and their upper limit is very large, it is not so easy to obtain approximated functions accurately for the whole design domain. This paper proposes a sequential design domain method, which is very useful to carry out sequential approximate optimization in this case. In this paper, the response surface methodology is used to obtain approximated functions and the orthogonal array is used for design of experiments. The sequential approximate optimization of 3-bar and 10-bar trusses is demonstrated to verify the reliability of the sequential design domain method.

  • PDF

Solving a Nonlinear Inverse Convection Problem Using the Sequential Gradient Method

  • Lee, Woo-Il;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.710-719
    • /
    • 2002
  • This study investigates a nonlinear inverse convection problem for a laminar-forced convective flow between two parallel plates. The upper plate is exposed to unknown heat flux while the lower plate is insulated. The unknown heat flux is determined using temperature measured on the lower plate. The thermophysical properties of the fluid are temperature dependent, which renders the problem nonlinear. The sequential gradient method is applied to this nonlinear inverse problem in order to solve the problem efficiently. The function specification method is incorporated to stabilize the sequential estimation. The corresponding adjoint formalism is provided. Accuracy and stability have been examined for the proposed method with test cases. The tendency of deterministic error is investigated for several parameters. Stable solutions are achieved eve]1 with severely impaired measurement data.

Implementation of interlock in Process Control System Described by Sequential Function Chart Graphical Language (Sequential Function Chart 그래픽 언어로 記述된 공정제어 시스템에서 인터록의 실현)

  • 유정봉;우광준;허경무
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.2
    • /
    • pp.54-61
    • /
    • 1998
  • Ladder Diagram(LD) is the most extensively used among Programmable Logic Controller(PLC) standard languages for the design of process control system with PLC. But LD has the disadvantages for data processing and maintenance. On the other hand, there is full support for describing sequences so that complete sequential behavior can be easily broken down using a concise graphical language called Sequential Function Chart(SFC). Inspite of those characteristics, SFC is not suitable for describing interlock logic. In this paper, we propose the method for implementing interlock logic by using conventional SFC compiler and verify the effectiveness by applying proposed scheme to the In-Line Spin Coater.Coater.

  • PDF

A Methodology for Improving fitness of the Latent Growth Modeling using Association Rule Mining (연관규칙을 이용한 잠재성장모형의 개선방법론)

  • Cho, Yeong Bin;Jun, Jae-Hoon;Choi, Byungwoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.217-225
    • /
    • 2019
  • The Latent Growth Modeling(LGM) is known as the typical analysis method of longitudinal data and it could be classified into unconditional model and conditional model. It is common to assume that the growth trajectory of unconditional model of LGM is linear. In the case of quasi-linear, the methodology for improving the model fitness using Sequential Pattern of Association Rule Mining is suggested. To do this, we divide longitudinal data into quintiles and extract periodic changes of the longitudinal data in each quintiles and make sequential pattern based on this periodic changes. To evaluate the effectiveness, the LGM module in SPSS AMOS was used and the dataset of the Youth Panel from 2001 to 2006 of Korea Employment Information Service. Our methodology was able to increase the fitness of the model compared to the simple linear growth trajectory.

A Study on Partial Pattern Estimation for Sequential Agglomerative Hierarchical Nested Model (SAHN 모델의 부분적 패턴 추정 방법에 대한 연구)

  • Jang, Kyung-Won;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.143-145
    • /
    • 2005
  • In this paper, an empirical study result on pattern estimation method is devoted to reveal underlying data patterns with a relatively reduced computational cost. Presented method performs crisp type clustering with given n number of data samples by means of the sequential agglomerative hierarchical nested model (SAHN). Conventional SAHN based clustering requires large computation time in the initial step of algorithm. To deal with this concern, we modified overall process with a partial approach. In the beginning of this method, we divide given data set to several sub groups with uniform sampling and then each divided sub data group is applied to SAHN based method. The advantage of this method reduces computation time of original process and gives similar results. Proposed is applied to several test data set and simulation result with conceptual analysis is presented.

  • PDF

The Identification Of Multiple Outliers

  • Park, Jin-Pyo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.201-215
    • /
    • 2000
  • The classical method for regression analysis is the least squares method. However, if the data contain significant outliers, the least squares estimator can be broken down by outliers. To remedy this problem, the robust methods are important complement to the least squares method. Robust methods down weighs or completely ignore the outliers. This is not always best because the outliers can contain some very important information about the population. If they can be detected, the outliers can be further inspected and appropriate action can be taken based on the results. In this paper, I propose a sequential outlier test to identify outliers. It is based on the nonrobust estimate and the robust estimate of scatter of a robust regression residuals and is applied in forward procedure, removing the most extreme data at each step, until the test fails to detect outliers. Unlike other forward procedures, the present one is unaffected by swamping or masking effects because the statistics is based on the robust regression residuals. I show the asymptotic distribution of the test statistics and apply the test to several real data and simulated data for the test to be shown to perform fairly well.

  • PDF

Sequential prediction of TBM penetration rate using a gradient boosted regression tree during tunneling

  • Lee, Hang-Lo;Song, Ki-Il;Qi, Chongchong;Kim, Kyoung-Yul
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.523-533
    • /
    • 2022
  • Several prediction model of penetration rate (PR) of tunnel boring machines (TBMs) have been focused on applying to design stage. In construction stage, however, the expected PR and its trends are changed during tunneling owing to TBM excavation skills and the gap between the investigated and actual geological conditions. Monitoring the PR during tunneling is crucial to rescheduling the excavation plan in real-time. This study proposes a sequential prediction method applicable in the construction stage. Geological and TBM operating data are collected from Gunpo cable tunnel in Korea, and preprocessed through normalization and augmentation. The results show that the sequential prediction for 1 ring unit prediction distance (UPD) is R2≥0.79; whereas, a one-step prediction is R2≤0.30. In modeling algorithm, a gradient boosted regression tree (GBRT) outperformed a least square-based linear regression in sequential prediction method. For practical use, a simple equation between the R2 and UPD is proposed. When UPD increases R2 decreases exponentially; In particular, UPD at R2=0.60 is calculated as 28 rings using the equation. Such a time interval will provide enough time for decision-making. Evidently, the UPD can be adjusted depending on other project and the R2 value targeted by an operator. Therefore, a calculation process for the equation between the R2 and UPD is addressed.

New Encoding Method for Low Power Sequential Access ROMs

  • Cho, Seong-Ik;Jung, Ki-Sang;Kim, Sung-Mi;You, Namhee;Lee, Jong-Yeol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.443-450
    • /
    • 2013
  • This paper propose a new ROM data encoding method that takes into account of a sequential access pattern to reduce the power consumption in ROMs used in applications such as FIR filters that access the ROM sequentially. In the proposed encoding method, the number of 1's, of which the increment leads to the increase of the power consumption, is reduced by applying an exclusive-or (XOR) operation to a bit pair composed of two consecutive bits in a bit line. The encoded data can be decoded by using XOR gates and D flip-flops, which are usually used in digital systems for synchronization and glitch suppression. By applying the proposed encoding method to coefficient ROMs of FIR filters designed by using various design methods, we can achieve average reduction of 43.7% over the unencoded original data in the power consumption, which is larger reduction than those achieved by previous methods.

Training HMM Structure and Parameters with Genetic Algorithm and Harmony Search Algorithm

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.109-114
    • /
    • 2012
  • In this paper, we utilize training strategy of hidden Markov model (HMM) to use in versatile issues such as classification of time-series sequential data such as electric transient disturbance problem in power system. For this, an automatic means of optimizing HMMs would be highly desirable, but it raises important issues: model interpretation and complexity control. With this in mind, we explore the possibility of using genetic algorithm (GA) and harmony search (HS) algorithm for optimizing the HMM. GA is flexible to allow incorporating other methods, such as Baum-Welch, within their cycle. Furthermore, operators that alter the structure of HMMs can be designed to simple structures. HS algorithm with parameter-setting free technique is proper for optimizing the parameters of HMM. HS algorithm is flexible so as to allow the elimination of requiring tedious parameter assigning efforts. In this paper, a sequential data analysis simulation is illustrated, and the optimized-HMMs are evaluated. The optimized HMM was capable of classifying a sequential data set for testing compared with the normal HMM.

A Comparison of Orbit Determination Performance for the KOMPSAT-2 using Batch Filter and Sequential Filter (아리랑위성 2호 데이터를 이용한 연속추정필터와 배치필터 처리 결과 비교)

  • Cho, Dong-Hyun;Kim, Hae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.149-157
    • /
    • 2012
  • In this paper, the performance of the sequential filter for a space debris collision management system is analyzed by using the flight data of KOMPSAT-2. To analyze the performance of the sequential filter, the results of batch filter used in the orbit determination system of the KOMPSAT-2 ground station is used as reference data. The overlap method is also used to evaluate the orbit accuracy. This paper shows that the orbit determination accuracy of the sequential filter is similar to that of the KOMPSAT-2 ground station, but dissimilar characteristics exist due to the filter difference. In addition, it is also shown that the orbit determination accuracy is order of 1m root mean square by using 30 hour GPS navigation solutions and 6 hour comparison period for the overlap method.