• Title/Summary/Keyword: sequential data

Search Result 1,105, Processing Time 0.028 seconds

Sequential Point Cloud Generation Method for Efficient Representation of Multi-view plus Depth Data (다시점 영상 및 깊이 영상의 효율적인 표현을 위한 순차적 복원 기반 포인트 클라우드 생성 기법)

  • Kang, Sehui;Han, Hyunmin;Kim, Binna;Lee, Minhoe;Hwang, Sung Soo;Bang, Gun
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.166-173
    • /
    • 2020
  • Multi-view images, which are widely used for providing free-viewpoint services, can enhance the quality of synthetic views when the number of views increases. However, there needs an efficient representation method because of the tremendous amount of data. In this paper, we propose a method for generating point cloud data for the efficient representation of multi-view color and depth images. The proposed method conducts sequential reconstruction of point clouds at each viewpoint as a method of deleting duplicate data. A 3D point of a point cloud is projected to a frame to be reconstructed, and the color and depth of the 3D point is compared with the pixel where it is projected. When the 3D point and the pixel are similar enough, then the pixel is not used for generating a 3D point. In this way, we can reduce the number of reconstructed 3D points. Experimental results show that the propose method generates a point cloud which can generate multi-view images while minimizing the number of 3D points.

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.

Video Classification System Based on Similarity Representation Among Sequential Data (순차 데이터간의 유사도 표현에 의한 동영상 분류)

  • Lee, Hosuk;Yang, Jihoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • It is not easy to learn simple expressions of moving picture data since it contains noise and a lot of information in addition to time-based information. In this study, we propose a similarity representation method and a deep learning method between sequential data which can express such video data abstractly and simpler. This is to learn and obtain a function that allow them to have maximum information when interpreting the degree of similarity between image data vectors constituting a moving picture. Through the actual data, it is confirmed that the proposed method shows better classification performance than the existing moving image classification methods.

Clustering Method for Classifying Signal Regions Based on Wi-Fi Fingerprint (Wi-Fi 핑거프린트 기반 신호 영역 구분을 위한 클러스터링 방법)

  • Yoon, Chang-Pyo;Yun, Dai Yeol;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.456-457
    • /
    • 2021
  • Recently, in order to more accurately provide indoor location-based services, technologies using Wi-Fi fingerprints and deep learning are being studied. Among the deep learning models, an RNN model that can store information from the past can store continuous movements in indoor positioning, thereby reducing positioning errors. When using an RNN model for indoor positioning, the collected training data must be continuous sequential data. However, the Wi-Fi fingerprint data collected to determine specific location information cannot be used as training data for an RNN model because only RSSI for a specific location is recorded. This paper proposes a region clustering technique for sequential input data generation of RNN models based on Wi-Fi fingerprint data.

  • PDF

A Study of 3D Ore-Modeling by Integrated Analysis of Borehole and Geophysical Data (시추자료와 물리탐사자료의 복합해석을 통한 3차원 광체 모델링 연구)

  • Noh, Myounggun;Oh, Seokhoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.257-267
    • /
    • 2013
  • 3-D ore modeling was performed to understand the configuration of ore bodies by integrated analysis of borehole and geophysical data in iron-mine area. Five representative indices of rocks were designated, which were obtained from geological survey and borehole. The five indices of rocks were geostatistically simulated by Sequential Indicator Simulation method to delineate boundary of the ore bodies. And Ordinary Kriging and Sequential Gaussian Simulation was applied to make secondary information using resistivity data from magnetotellurics and DC resistivity survey, and this information was used for simple kriging with local varying means, one of integrated kriging techniques. From the correlation analysis between each properties, it was found that high grade of ore is characterized by increased density, whereas the electrical resistivity decreases. With the integrated results of geophysical and borehole data, it was also found that the real configuration of ore body was similar to the modeled result and information about ore grade in 3-D space was obtained.

A Data Based Methodology for Estimating the Unconditional Model of the Latent Growth Modeling (잠재성장모형의 무조건적 모델 추정을 위한 데이터 기반 방법론)

  • Cho, Yeong Bin
    • Journal of Digital Convergence
    • /
    • v.16 no.6
    • /
    • pp.85-93
    • /
    • 2018
  • The Latent Growth Modeling(LGM) is known as the arising analysis method of longitudinal data and it could be classified into unconditional model and conditional model. Unconditional model requires estimated value of intercept and slope to complete a model of fitness. However, the existing LGM is in absence of a structured methodology to estimate slope when longitudinal data is neither simple linear function nor the pre-defined function. This study used Sequential Pattern of Association Rule Mining to calculate slope of unconditional model. The applied dataset is 'the Youth Panel 2001-2006' from Korea Employment Information Service. The proposed methodology was able to identify increasing fitness of the model comparing to the existing simple linear function and visualizing process of slope estimation.

VLSI Design of a 2048 Point FFT/IFFT by Sequential Data Processing for Digital Audio Broadcasting System (순차적 데이터 처리방식을 이용한 디지틀 오디오 방송용 2048 Point FFT/IFFT의 VLSI 설계)

  • Choe, Jun-Rim
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.65-73
    • /
    • 2002
  • In this paper, we propose and verify an implementation method for a single-chip 2048 complex point FFT/IFFT in terms of sequential data processing. For the sequential processing of 2048 complex data, buffers to store the input data are necessary. Therefore, DRAM-like pipelined commutator architecture is used as a buffer. The proposed structure brings about the 60% chip size reduction compared with conventional approach by using this design method. The 16-point FFT is a basic building block of the entire FFT chip, and the 2048-point FFT consists of the cascaded blocks with five stages of radix-4 and one stage of radix-2. Since each stage requires rounding of the resulting bits while maintaining the proper S/N ratio, the convergent block floating point (CBFP) algorithm is used for the effective internal bit rounding and their method contributed to a single chip design of digital audio broadcasting system.

Application of SeaWiFS Chlorophyll-a Ocean Color Image for estimating Sea Surface Currents from Geostationary Ocean Color Imagery (GOCI) data (정지궤도 해색탑재체(GOCI) 표층유속 추정을 위한 SeaWiFS 해색자료의 응용)

  • Kim, Eung;Ro, Young-Jae;Jeon, Dong-Chull
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.209-220
    • /
    • 2010
  • One of the most difficult tasks in measuring oceanic conditions is to produce oceanic current information. In efforts to overcome the difficulties, various attempts have been carried out to estimate the speed and direction of ocean currents by utilizing sequential satellite images. In this study, we have estimated sea surface current vectors to the south of the Korean Peninsula, based on the maximum cross-correlation method by using sequential ocean color images of SeaWiFS chlorophyll-a. Comparison of surface current vectors estimated by this method with the geostrophic current vectors estimated from satellite altimeter data and in-situ ADCP measurements are good in that current speeds are underestimated by about 15% and current directions are show differences of about $36^{\circ}$ compared with previous results. The technique of estimating current vectors based on maximum cross-correlation applied on sequential images of SeaWiFS is promising for the future application of GOCI data for the ocean studies.

The Effect of Robot-Used Play through Appreciation of Picture Books on Children's Sequential Thinking (그림책 감상을 통한 로봇 활용 놀이가 유아의 순서적 사고에 미치는 영향)

  • An Ji Su;Nam Ki Won
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.357-365
    • /
    • 2024
  • The purpose of this study is to investigate the effects of children's robot-based play on sequential thinking through appreciation of picture books. For this purpose, 15 children aged 5 years old in each kindergarten located in Seoul were selected and J kindergarten (experimental group) supported <Picture book appreciation robot play> and C kindergarten (comparison group) supported <Picture book appreciation free play>. In order to examine the difference in play experience between the two groups, the score data before and after play support was collected using the sequential thinking test tool, and the collected data were analyzed using SPSS 28.0 program to perform ANCOVA (Covariance Analysis). As a result, the experimental group that experienced robot-based play through picture book appreciation showed significant improvement in the total score of sequential thinking and the sub-areas of dynamics, behavior, and intention compared to the control group.The results of this study are valuable as a play study to discover the value of robots as a creative play medium led by young children and to promote sequential thinking ability, which is emphasized as the capacity of future society.