• Title/Summary/Keyword: sequencing batch membrane reactor

Search Result 22, Processing Time 0.031 seconds

Factors Affecting Biofouling in Membrane Coupled Sequencing Batch Reactor

  • Lee, Chung-Hak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.7-10
    • /
    • 2003
  • Factors affecting filtration performance were investigated in a Sequencing Batch Reactor (SBR) coupled with a submerged microfiltration module. Special bioreactors for aerobic and anoxic phases, respectively, were specifically designed in order to differentiate tile effect of Dissolved oxygen (DO) from that of mixing intensity on membrane filterability. DO concentration as well as mixing intensity proved to have a major influence on the membrane performance regardless of the SBR phase. A higher DO concentration resulted in a slower rise in TMP, corresponding to less membrane fouling.

  • PDF

Membrane-Coupled Sequencing Batch Reactor System for the Advanced Treatment of Rural Village Sewage (막결합 연속회분식 반응기를 이용한 농촌마을 하수의 고도처리)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.20-30
    • /
    • 2014
  • A membrane-coupled sequencing batch reactor (MSBR) was used for the advanced treatment of rural village sewage which is very low C/N ratio. The effect of powdered activated carbon, aeration rate, and external organic material loadings on the treatment efficiency and filtration performance were investigated in sequencing batch reactor, in which a flat-sheet type microfiltration membrane with a pore size of $0.4{\mu}m$ was submerged. At the initial operation (within 54 days) MLSS concentration, and the removal efficiencies of COD, T-N, and T-P were increased with the increase of C/N ratio. After 89 days the removal efficiencies of COD, T-N, and T-P were 97.1%, 75.0%, and 48.3%, respectively. Suspended solid-free effluent was obtained by membrane filtration. The T-P removal was relatively low because of depending on the amount of excess sludge wasting. During the operation of MSBR with powdered activated carbon, the particle size of the sludge reduced by the increase of collision frequency and mixing intensity. In comparison with MSBR without powdered activated carbon, TMP of MSBR with that was significantly elevated.

Effect of Media in Advanced Treatment of Sewage Using Submerged Membrane-Coupled Sequencing Batch Reactor (침지형 막결합 연속회분식 반응기를 사용한 하수의 고도처리에서 담체의 효과)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.470-479
    • /
    • 2016
  • In the advanced treatment of sewage using the submerged membrane-coupled sequencing batch reactor (SMSBR) with media, the effect of media on the filtration performance and removal efficiency were investigated. Dosages of the media in the SMSBR were 10% based on working volume of reactor. As a control system, SMSBR without media and PAC, SMSBR with PAC (10 g/L) only, and SMSBR with media and PAC were also operated. The experimental results showed that there was no big difference observed in the removal efficiencies of COD, T-N, and T-P irrespective of the dosages of the media and PAC. But transmembrane pressure (TMP) of SMSBR with media increased slowly during the operation time, while that of SMSBR without media increased rapidly. Using SMSBR with media, it was possible to operate without the membrane cleaning during the 91 days. Using SMSBR with media only, after 80 days the average removal efficiencies of COD, T-N, and T-P were 95.0, 69.3%, and 51.4%, respectively.

The Effect of Media on the Removal Efficiency and Filtration Performance in the Submerged Membrane-Coupled Sequencing Batch Reactor with Media (담체가 첨가된 침지형 막결합 연속회분식 반응기에서 제거효율과 여과성능에 대한 담체의 효과)

  • Kim, Seung-Geon;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.450-460
    • /
    • 2012
  • In the submerged membrane-coupled sequencing batch reactor (MSBR) with sponge type media, the effect of media on the removal efficiency and filtration performance were investigated. Dosages of the media in the MSBR were set of 5%, 10%, and 20% based on working volume of reactor. As a control system, the MSBR without media was also operated. The experimental results showed that there was also no difference observed in the removal efficiencies of COD, T-N, and T-P irrespective of the dosages of the media. But TMP (transmembrane pressure) of the MSBR with media increased slowly during the operation time, while that of the MSBR without media increased rapidly at the initial operation. This result was thought that the collisions between flat membrane and moving media gave shear forces which decreased the cake layer on the surface of flat type membrane. Consequently, this study showed that filtration performance of the MSBR with media was greatly enhanced compared with that of the MSBR without media. The MSBR with media suggested in this study can be a good candidate for the wastewater treatment.

The Effect of Filling Step on the Removal Efficiency and Filtration Performance in the Operation of Submerged Membrane-Coupled Sequencing Batch Reactor (침지형 막결합 연속회분식 반응기의 운전에서 폐수의 도입단계가 제거효율과 여과성능에 미치는 영향)

  • Kim, Seung-Geon;Lee, Ho-Won;Kang, Yeung-Joo
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.263-269
    • /
    • 2011
  • In the operation of submerged membrane-coupled sequencing batch reactor, the effect of filling step on the removal efficiency and filtration performance were investigated. Two sets of operation modes, the filling step located in the beginning of aerobic step (Mode-1) and the beginning of anoxic step (Mode-2), during 89 days were conducted. There was no wide difference in the COD removal and filtration performance between two sets of operation modes. But in the removal efficiency of nutrients (total nitrogen and total phosphorous), Mode-2 was more effective than Mode-1. In the case of Mode-2, average removal efficiencies of COD, total nitrogen, and total phosphorous were 99.1, 73.3, and 77.3%, respectively.

Nutrient Removal Characteristics on Organic Material Loadings in Submerged Flat Sheet Type Sequencing Batch Membrane Reactor (침지식 평판형 연속회분식 박반응기에서 유입 유기물 부하의 변화에 따른 영양염류의 제거 특성)

  • Kim, Seung-Geon;Lee, Ho-Won;Kang, Yeung-Joo
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.241-248
    • /
    • 2010
  • The effect of organic material loadings on nutrient removal characteristics were investigated in sequencing batch reactor, in which a flat sheet type microfiltration membrane with a pore size of $0.4\;{\mu}m$ was submerged. Three organic concentrations of 200 mg/L (Run-1), 400 mg/L (Run-2) and 800 mg/L (Run-3) were carried out continuously to identify their effect on the filtration performance and nutrient removal. The removal efficiencies of T-N and T-P were increased with the increase of COD/N and COD/P. The T-N removal efficiencies of Run-1, Run-2 and Run-3 were 28.1, 32.6 and 90.4%, the average concentrations of T-N in permeate were 32.0, 30.0, and 4.3 mg/L, respectively. The T-P removal efficiencies of Run-1, Run-2 and Run-3 were 13.6, 35.3 and 93.1%, the average concentrations of T-P in permeate were 3.11, 2.33, and 0.25 mg/L, respectively.

Filtration Performance in MSBR (Membrane-Coupled Sequencing Batch Reactor) using a Membrane for Both Filtration and Aeration (막결합형 연속회분식 생물반응조에서 여과 및 공기공급용으로 분리막을 사용할 때 공기공급이 막여과 성능에 미치는 영향)

  • Ryu, Kwan-Young;Park, Pyung-Kyu;Lee, Chung-Hak
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.337-346
    • /
    • 2005
  • An MSBR using a membrane for not only filtration but also aeration (MA-MSBR) was designed to reduce membrane fouling and to enhance water quality, and compared with an MSBR using a membrane for only filtration (BA-MSBR). COD removal efficiency of the MA-MSBR was similar to that of the BA-MSBR, but membrane performance of the MA-MSBR was better than that of the BA-MSBR. The MA-MSBR had more small particles in mixed liquor, so the specific cake resistance of flocs in the MA-MSBR was higher than that in the BA-MSBR. However, in the aerobic reaction step of the MA-MSBR, air went through membrane pores and out of the membrane surface, so cake layers on the membrane surface and a portion of organics adsorbed on membrane pores could be removed periodically. Therefore, cake resistance, $R_c$, and fouling resistance by adsorption and blocking, $R_f$, for the MA-MSBR increased more slowly than those for the BA-MSBR. Additionally, in order to compare the energy efficiency for two MSBRs, oxygen transfer efficiency and power to supply air into the reactor by a membrane module and a bubble stone diffuser were measured using deionized water. From these measurements, the transferred oxygen amount per unit energy was calculated, resulting that of MA-MSBR was slightly higher than that of BA-MSBR.