• 제목/요약/키워드: sequences in Hilbert space

검색결과 21건 처리시간 0.023초

SYSTEM OF GENERALIZED NONLINEAR REGULARIZED NONCONVEX VARIATIONAL INEQUALITIES

  • Salahuddin, Salahuddin
    • Korean Journal of Mathematics
    • /
    • 제24권2호
    • /
    • pp.181-198
    • /
    • 2016
  • In this work, we suggest a new system of generalized nonlinear regularized nonconvex variational inequalities in a real Hilbert space and establish an equivalence relation between this system and fixed point problems. By using the equivalence relation we suggest a new perturbed projection iterative algorithms with mixed errors for finding a solution set of system of generalized nonlinear regularized nonconvex variational inequalities.

STRONG CONVERGENCE OF AN EXTENDED EXTRAGRADIENT METHOD FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

  • Kim, Jong-Kyu;Anh, Pham Ngoc;Nam, Young-Man
    • 대한수학회지
    • /
    • 제49권1호
    • /
    • pp.187-200
    • /
    • 2012
  • In this paper, we introduced a new extended extragradient iteration algorithm for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of equilibrium problems for a monotone and Lipschitz-type continuous mapping. And we show that the iterative sequences generated by this algorithm converge strongly to the common element in a real Hilbert space.

INVERTIBLE INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALGℒ

  • Kwak, Sung-Kon;Kang, Joo-Ho
    • 호남수학학술지
    • /
    • 제33권1호
    • /
    • pp.115-120
    • /
    • 2011
  • Given vectors x and y in a separable complex Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that Ax = y. We show the following : Let Alg$\cal{L}$ be a tridiagonal algebra on a separable complex Hilbert space H and let x = ($x_i$) and y = ($y_i$) be vectors in H. Then the following are equivalent: (1) There exists an invertible operator A = ($a_{kj}$) in Alg$\cal{L}$ such that Ax = y. (2) There exist bounded sequences $\{{\alpha}_n\}$ and $\{{{\beta}}_n\}$ in $\mathbb{C}$ such that for all $k\in\mathbb{N}$, ${\alpha}_{2k-1}\neq0,\;{\beta}_{2k-1}=\frac{1}{{\alpha}_{2k-1}},\;{\beta}_{2k}=\frac{\alpha_{2k}}{{\alpha}_{2k-1}\alpha_{2k+1}}$ and $$y_1={\alpha}_1x_1+{\alpha}_2x_2$$ $$y_{2k}={\alpha}_{4k-1}x_{2k}$$ $$y_{2k+1}={\alpha}_{4k}x_{2k}+{\alpha}_{4k+1}x_{2k+1}+{\alpha}_{4k+2}x_{2k+2}$$.

INVERTIBLE INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONG WAN
    • 호남수학학술지
    • /
    • 제27권2호
    • /
    • pp.243-250
    • /
    • 2005
  • Given operators X and Y acting on a separable Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. We show the following: Let ${\mathcal{L}}$ be a subspace lattice acting on a separable complex Hilbert space ${\mathcal{H}}$. and let $X=(x_{ij})$ and $Y=(y_{ij})$ be operators acting on ${\mathcal{H}}$. Then the following are equivalent: (1) There exists an invertible operator $A=(a_{ij})$ in $Alg{\mathcal{L}}$ such that AX = Y. (2) There exist bounded sequences {${\alpha}_n$} and {${\beta}_n$} in ${\mathbb{C}}$ such that $${\alpha}_{2k-1}{\neq}0,\;{\beta}_{2k-1}=\frac{1}{{\alpha}_{2k-1}},\;{\beta}_{2k}=-\frac{{\alpha}_{2k}}{{\alpha}_{2k-1}{\alpha}_{2k+1}}$$ and $$y_{i1}={\alpha}_1x_{i1}+{\alpha}_2x_{i2}$$ $$y_{i\;2k}={\alpha}_{4k-1}x_{i\;2k}$$ $$y_{i\;2k+1}={\alpha}_{4k}x_{i\;2k}+{\alpha}_{4k+1}x_{i\;2k+1}+{\alpha}_{4k+2}x_{i\;2k+2}$$ for $$k{\in}N$$.

  • PDF

PLANK PROBLEMS, POLARIZATION AND CHEBYSHEV CONSTANTS

  • Revesz, Szilard-Gy.;Sarantopoulos, Yannis
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.157-174
    • /
    • 2004
  • In this work we discuss "plank problems" for complex Banach spaces and in particular for the classical $L^{p}(\mu)$ spaces. In the case $1\;{\leq}\;p\;{\leq}\;2$ we obtain optimal results and for finite dimensional complex Banach spaces, in a special case, we have improved an early result by K. Ball [3]. By using these results, in some cases we are able to find best possible lower bounds for the norms of homogeneous polynomials which are products of linear forms. In particular, we give an estimate in the case of a real Hilbert space which seems to be a difficult problem. We have also obtained some results on the so-called n-th (linear) polarization constant of a Banach space which is an isometric property of the space. Finally, known polynomial inequalities have been derived as simple consequences of various results related to plank problems.

MODIFIED KRASNOSELSKI-MANN ITERATIONS FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

  • Naidu, S.V.R.;Sangago, Mengistu-Goa
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.753-762
    • /
    • 2010
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Let T : K $\rightarrow$ K be a nonexpansive mapping with a nonempty fixed point set Fix(T). Let f : K $\rightarrow$ K be a contraction mapping. Let {$\alpha_n$} and {$\beta_n$} be sequences in (0, 1) such that $\lim_{x{\rightarrow}0}{\alpha}_n=0$, (0.1) $\sum_{n=0}^{\infty}\;{\alpha}_n=+{\infty}$, (0.2) 0 < a ${\leq}\;{\beta}_n\;{\leq}$ b < 1 for all $n\;{\geq}\;0$. (0.3) Then it is proved that the modified Krasnoselski-Mann iterative sequence {$x_n$} given by {$x_0\;{\in}\;K$, $y_n\;=\;{\alpha}_{n}f(x_n)+(1-\alpha_n)x_n$, $n\;{\geq}\;0$, $x_{n+1}=(1-{\beta}_n)y_n+{\beta}_nTy_n$, $n\;{\geq}\;0$, (0.4) converges strongly to a point p $\in$ Fix(T} which satisfies the variational inequality

    $\leq$ 0, z $\in$ Fix(T). (0.5) This result improves and extends the corresponding results of Yao et al[Y.Yao, H. Zhou, Y. C. Liou, Strong convergence of a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings, J Appl Math Com-put (2009)29:383-389.

ANALOGUE OF WIENER INTEGRAL IN THE SPACE OF SEQUENCES OF REAL NUMBERS

  • Ryu, Kun Sik
    • 충청수학회지
    • /
    • 제25권1호
    • /
    • pp.65-72
    • /
    • 2012
  • Let T > 0 be given. Let $(C[0,T],m_{\varphi})$ be the analogue of Wiener measure space, associated with the Borel proba-bility measure ${\varphi}$ on ${\mathbb{R}}$, let $(L_{2}[0,T],\tilde{\omega})$ be the centered Gaussian measure space with the correlation operator $(-\frac{d^{2}}{dx^{2}})^{-1}$ and ${\el}_2,\;\tilde{m}$ be the abstract Wiener measure space. Let U be the space of all sequence $<c_{n}>$ in ${\el}_{2}$ such that the limit $lim_{{m}{\rightarrow}\infty}\;\frac{1}{m+1}\;\sum{^{m}}{_{n=0}}\;\sum_{k=0}^{n}\;c_{k}\;cos\;\frac{k{\pi}t}{T}$ converges uniformly on [0,T] and give a set function m such that for any Borel subset G of $\el_2$, $m(\mathcal{U}\cap\;P_{0}^{-1}\;o\;P_{0}(G))\;=\tilde{m}(P_{0}^{-1}\;o\;P_{0}(G))$. The goal of this note is to study the relationship among the measures $m_{\varphi},\;\tilde{\omega},\;\tilde{m}$ and $m$.

히스토그램 시퀀스 구성을 위한 공간 지역성 보존 척도 (Spatial Locality Preservation Metric for Constructing Histogram Sequences)

  • 이정곤;김범수;문양세;최미정
    • 정보화연구
    • /
    • 제10권1호
    • /
    • pp.79-91
    • /
    • 2013
  • 본 논문은 히스토그램 시퀀스(histogram sequence)에 저차원 변환을 적용할 때, 어떤 공간 채움 곡선(space filling curve: SFC)의 성능이 가장 좋은지를 판단하는 체계적인 평가방법을 제안한다. 히스토그램 시퀀스는 이미지를 주어진 SFC에 따라 시계열 형태로 표현한 것을 말한다. 히스토그램 시퀀스는 매우 고차원이므로 저장 및 검색이 매우 어렵다. 효율적인 저장 및 검색을 위해서 시계열 저차원 변환의 하한을 사용할 수 있는데, 이 하한의 성능은 SFC의 종류에 따라 큰 영향을 받게 된다. 본 논문에서는 히스토그램 시퀀스를 저차원 변환할 때 어떤 SFC의 성능이 좋은지를 평가하기 위해, "히스토그램 시퀀스에서 엔트리들이 인접하면 이미지에서도 해당 셀들이 인접해야 한다"는 공간지역성(spatial locality)의 개념을 제안한다. 다음으로, 공간 지역성을 정량적으로 평가할 수 있는 공간 지역성 보존 척도(spatial locality preservation metric)를 제안하고, 이를 계산하기 위한 정형적인 방법을 제시한다. 본 논문에서는 공간 지역성 보존 척도 측면에서 총 다섯 가지의 SFC를 평가하고, 이 평가 결과가 실제 이미지 매칭의 저차원 변환 성능 평가와 유사함을 확인한다. 또한, 저차원 변환 기반의 k-NN(k-nearest neighbors) 검색을 실험하여, 공간 지역성 보존 척도가 가장 낮은 힐버트-오더가 k-NN 검색에서도 가장 좋은 성능을 보임을 통해, 제안한 공간 지역성 보존 척도의 유용성을 입증한다.

SPECTRA OF THE IMAGES UNDER THE FAITHFUL $^*$-REPRESENTATION OF L(H) ON K

  • Cha, Hyung-Koo
    • 대한수학회보
    • /
    • 제22권1호
    • /
    • pp.23-29
    • /
    • 1985
  • Let H be an arbitrary complex Hilbert space. We constructed an extension K of H by means of weakly convergent sequences in H and the Banach limit. Let .phi. be the faithful *-representation of L(H) on K. In this note, we investigated the relations between spectra of T in L(H) and .phi.(T) in L(K) and we obtained the following results: 1) If T is a compact operator on H, then .phi.(T) is also a compact operator on K (Proposition 6), 2) .sigma.$_{l}$ (.phi.(T)).contnd..sigma.$_{l}$ (T) for any operator T.mem.L(H) (Corollary 10), 3) For every operator T.mem.L(H), .sigma.$_{ap}$ (.phi.(T))=.sigma.$_{ap}$ (T))=.sigma.$_{ap}$ (T)=.sigma.$_{p}$(.phi.(T)) (Lemma 12, 13) and .sigma.$_{c}$(.phi.(T))=.sigma.(Theorem 15).15).

  • PDF