• Title/Summary/Keyword: sequence retrieval

Search Result 108, Processing Time 0.024 seconds

Spoken Document Retrieval Based on Phone Sequence Strings Decoded by PVDHMM (PVDHMM을 이용한 음소열 기반의 SDR 응용)

  • Choi, Dae-Lim;Kim, Bong-Wan;Kim, Chong-Kyo;Lee, Yong-Ju
    • MALSORI
    • /
    • no.62
    • /
    • pp.133-147
    • /
    • 2007
  • In this paper, we introduce a phone vector discrete HMM(PVDHMM) that decodes a phone sequence string, and demonstrates the applicability to spoken document retrieval. The PVDHMM treats a phone recognizer or large vocabulary continuous speech recognizer (LVCSR) as a vector quantizer whose codebook size is equal to the size of its phone set. We apply the PVDHMM to decode the phone sequence strings and compare the outputs with those of a continuous speech recognizer(CSR). Also we carry out spoken document retrieval experiment through PVDHMM word spotter on the phone sequence strings which are generated by phone recognizer or LVCSR and compare its results with those of retrieval through the phone-based vector space model.

  • PDF

An Efficient Video Retrieval Algorithm Using Key Frame Matching for Video Content Management

  • Kim, Sang Hyun
    • International Journal of Contents
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • To manipulate large video contents, effective video indexing and retrieval are required. A large number of video indexing and retrieval algorithms have been presented for frame-wise user query or video content query whereas a relatively few video sequence matching algorithms have been proposed for video sequence query. In this paper, we propose an efficient algorithm that extracts key frames using color histograms and matches the video sequences using edge features. To effectively match video sequences with a low computational load, we make use of the key frames extracted by the cumulative measure and the distance between key frames, and compare two sets of key frames using the modified Hausdorff distance. Experimental results with real sequence show that the proposed video sequence matching algorithm using edge features yields the higher accuracy and performance than conventional methods such as histogram difference, Euclidean metric, Battachaya distance, and directed divergence methods.

Protein Sequence Search based on N-gram Indexing

  • Hwang, Mi-Nyeong;Kim, Jin-Suk
    • Bioinformatics and Biosystems
    • /
    • v.1 no.1
    • /
    • pp.46-50
    • /
    • 2006
  • According to the advancement of experimental techniques in molecular biology, genomic and protein sequence databases are increasing in size exponentially, and mean sequence lengths are also increasing. Because the sizes of these databases become larger, it is difficult to search similar sequences in biological databases with significant homologies to a query sequence. In this paper, we present the N-gram indexing method to retrieve similar sequences fast, precisely and comparably. This method regards a protein sequence as a text written in language of 20 amino acid codes, adapts N-gram tokens of fixed-length as its indexing scheme for sequence strings. After such tokens are indexed for all the sequences in the database, sequences can be searched with information retrieval algorithms. Using this new method, we have developed a protein sequence search system named as ProSeS (PROtein Sequence Search). ProSeS is a protein sequence analysis system which provides overall analysis results such as similar sequences with significant homologies, predicted subcellular locations of the query sequence, and major keywords extracted from annotations of similar sequences. We show experimentally that the N-gram indexing approach saves the retrieval time significantly, and that it is as accurate as current popular search tool BLAST.

  • PDF

An Efficient Video Retrieval Algorithm Using Color and Edge Features

  • Kim Sang-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2006
  • To manipulate large video databases, effective video indexing and retrieval are required. A large number of video indexing and retrieval algorithms have been presented for frame-w]so user query or video content query whereas a relatively few video sequence matching algorithms have been proposed for video sequence query. In this paper, we propose an efficient algorithm to extract key frames using color histograms and to match the video sequences using edge features. To effectively match video sequences with low computational load, we make use of the key frames extracted by the cumulative measure and the distance between key frames, and compare two sets of key frames using the modified Hausdorff distance. Experimental results with several real sequences show that the proposed video retrieval algorithm using color and edge features yields the higher accuracy and performance than conventional methods such as histogram difference, Euclidean metric, Battachaya distance, and directed divergence methods.

  • PDF

Score Image Retrieval to Inaccurate OMR performance

  • Kim, Haekwang
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.838-843
    • /
    • 2021
  • This paper presents an algorithm for effective retrieval of score information to an input score image. The originality of the proposed algorithm is that it is designed to be robust to recognition errors by an OMR (Optical Music Recognition), while existing methods such as pitch histogram requires error induced OMR result be corrected before retrieval process. This approach helps people to retrieve score without training on music score for error correction. OMR takes a score image as input, recognizes musical symbols, and produces structural symbolic notation of the score as output, for example, in MusicXML format. Among the musical symbols on a score, it is observed that filled noteheads are rarely detected with errors with its simple black filled round shape for OMR processing. Barlines that separate measures also strong to OMR errors with its long uniform length vertical line characteristic. The proposed algorithm consists of a descriptor for a score and a similarity measure between a query score and a reference score. The descriptor is based on note-count, the number of filled noteheads in a measure. Each part of a score is represented by a sequence of note-count numbers. The descriptor is an n-gram sequence of the note-count sequence. Simulation results show that the proposed algorithm works successfully to a certain degree in score image-based retrieval for an erroneous OMR output.

Shape-Based Retrieval of Similar Subsequences in Time-Series Databases (시계열 데이타베이스에서 유사한 서브시퀀스의 모양 기반 검색)

  • Yun, Ji-Hui;Kim, Sang-Uk;Kim, Tae-Hun;Park, Sang-Hyeon
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.381-392
    • /
    • 2002
  • This paper deals with the problem of shape-based retrieval in time-series databases. The shape-based retrieval is defined as the operation that searches for the (sub)sequences whose shapes are similar to that of a given query sequence regardless of their actual element values. In this paper, we propose an effective and efficient approach for shape-based retrieval of subsequences. We first introduce a new similarity model for shape-based retrieval that supports various combinations of transformations such as shifting, scaling, moving average, and time warping. For efficient processing of the shape-based retrieval based on the similarity model, we also propose the indexing and query processing methods. To verify the superiority of our approach, we perform extensive experiments with the real-world S&P 500 stock data. The results reveal that our approach successfully finds all the subsequences that have the shapes similar to that of the query sequence, and also achieves significant speedup up to around 66 times compared with the sequential scan method.

Pattern Similarity Retrieval of Data Sequences for Video Retrieval System (비디오 검색 시스템을 위한 데이터 시퀀스 패턴 유사성 검색)

  • Lee Seok-Lyong
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.347-356
    • /
    • 2006
  • A video stream can be represented by a sequence of data points in a multidimensional space. In this paper, we introduce a trend vector that approximates values of data points in a sequence and represents the moving trend of points in the sequence, and present a pattern similarity matching method for data sequences using the trend vector. A sequence is partitioned into multiple segments, each of which is represented by a trend vector. The query processing is based on the comparison of these vectors instead of scanning data elements of entire sequences. Using the trend vector, our method is designed to filter out irrelevant sequences from a database and to find similar sequences with respect to a query. We have performed an extensive experiment on synthetic sequences as well as video streams. Experimental results show that the precision of our method is up to 2.1 times higher and the processing time is up to 45% reduced, compared with an existing method.

A Database Retrieval Model for Efficient Gene Sequence Alignment (효율적인 유전자 서열 비고를 위한 데이타베이스 검색 모델)

  • 김민준;임성화;김재훈;이원태;정진원
    • Journal of KIISE:Databases
    • /
    • v.31 no.3
    • /
    • pp.243-251
    • /
    • 2004
  • Most programs of bioinformatics provide biochemists and biologists retrieve and analysis services of gene and protein database. As these services retrieve database for each arrival of user's request, it takes a long time and increases server's load and response time. In this paper. by utilizing database retrieval patterns of sequence alignment programs in bioinformatics, grouping method is proposed to share database retrieval between many requests. Carpool method is also proposed to reduce response time as well as to increase system expandability by combining new arriving requests with the previous on going requests. The performance of our two proposed schemes is verified by mathematic analysis and simulation.

Content similarity matching for video sequence identification

  • Kim, Sang-Hyun
    • International Journal of Contents
    • /
    • v.6 no.3
    • /
    • pp.5-9
    • /
    • 2010
  • To manage large database system with video, effective video indexing and retrieval are required. A large number of video retrieval algorithms have been presented for frame-wise user query or video content query, whereas a few video identification algorithms have been proposed for video sequence query. In this paper, we propose an effective video identification algorithm for video sequence query that employs the Cauchy function of histograms between successive frames and the modified Hausdorff distance. To effectively match the video sequences with a low computational load, we make use of the key frames extracted by the cumulative Cauchy function and compare the set of key frames using the modified Hausdorff distance. Experimental results with several color video sequences show that the proposed algorithm for video identification yields remarkably higher performance than conventional algorithms such as Euclidean metric, and directed divergence methods.

Pruning and Matching Scheme for Rotation Invariant Leaf Image Retrieval

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.280-298
    • /
    • 2008
  • For efficient content-based image retrieval, diverse visual features such as color, texture, and shape have been widely used. In the case of leaf images, further improvement can be achieved based on the following observations. Most plants have unique shape of leaves that consist of one or more blades. Hence, blade-based matching can be more efficient than whole shape-based matching since the number and shape of blades are very effective to filtering out dissimilar leaves. Guaranteeing rotational invariance is critical for matching accuracy. In this paper, we propose a new shape representation, indexing and matching scheme for leaf image retrieval. For leaf shape representation, we generated a distance curve that is a sequence of distances between the leaf’s center and all the contour points. For matching, we developed a blade-based matching algorithm called rotation invariant - partial dynamic time warping (RI-PDTW). To speed up the matching, we suggest two additional techniques: i) priority queue-based pruning of unnecessary blade sequences for rotational invariance, and ii) lower bound-based pruning of unnecessary partial dynamic time warping (PDTW) calculations. We implemented a prototype system on the GEMINI framework [1][2]. Using experimental results, we showed that our scheme achieves excellent performance compared to competitive schemes.