• Title/Summary/Keyword: sequence images

Search Result 583, Processing Time 0.028 seconds

Fast Scene Change Detection Using Macro Block Information and Spatio-temporal Histogram (매크로 블록 정보와 시공간 히스토그램을 이용한 빠른 장면전환검출)

  • Jin, Ju-Kyong;Cho, Ju-Hee;Jeong, Jae-Hyup;Jeong, Dong-Suk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.141-148
    • /
    • 2011
  • Most of the previous works on scene change detection algorithm focus on the detection of abrupt rather than gradual changes. In general, gradual scene change detection algorithms require heavy computation. Some of those approaches don't consider the error factors such as flashlights, camera or object movements, and special effects. Many scenes change detection algorithms based on the histogram show better performances than other approaches, but they have computation load problem. In this paper, we proposed a scene change detection algorithm with fast and accurate performance using the vertical and horizontal blocked slice images and their macro block informations. We apply graph cut partitioning algorithm for clustering and partitioning of video sequence using generated spatio-temporal histogram. When making spatio-temporal histogram, we only use the central block on vertical and horizontal direction for performance improvement. To detect camera and object movement as well as various special effects accurately, we utilize the motion vector and type information of the macro block.

Software development for the visualization of brain fiber tract by using 24-bit color coding in diffusion tensor image

  • Oh, Jung-Su;Song, In-Chan;Ik hwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.133-133
    • /
    • 2002
  • Purpose: The purpose of paper is to implement software to visualize brain fiber tract using a 24-bit color coding scheme and to test its feasibility. Materials and Methods: MR imaging was performed on GE 1.5 T Signa scanner. For diffusion tensor image, we used a single shot spin-echo EPI sequence with 7 non-colinear pulsed-field gradient directions: (x, y, z):(1,1,0),(-1,1,0),(1,0,1),(-1,0,1),(0,1,1),(0,1,-1) and without diffusion gradient. B-factor was 500 sec/$\textrm{mm}^2$. Acquisition parameters are as follows: TUTE=10000ms/99ms, FOV=240mm, matrix=128${\times}$128, slice thickness/gap=6mm/0mm, total slice number=30. Subjects consisted of 10 normal young volunteers (age:21∼26 yrs, 5 men, 5 women). All DTI images were smoothed with Gaussian kernel with the FWHM of 2 pixels. Color coding schemes for visualization of directional information was as follows. HSV(Hue, Saturation, Value) color system is appropriate for assigning RGB(Red, Green, and Blue) value for every different directions because of its volumetric directional expression. Each of HSV are assigned due to (r,$\theta$,${\Phi}$) in spherical coordinate. HSV calculated by this way can be transformed into RGB color system by general HSV to RGB conversion formula. Symmetry schemes: It is natural to code the antipodal direction to be same color(antipodal symmetry). So even with no symmetry scheme, the antipodal symmetry must be included. With no symmetry scheme, we can assign every different colors for every different orientation.(H =${\Phi}$, S=2$\theta$/$\pi$, V=λw, where λw is anisotropy). But that may assign very discontinuous color even between adjacent yokels. On the other hand, Full symmetry or absolute value scheme includes symmetry for 180$^{\circ}$ rotation about xy-plane of color coordinate (rotational symmetry) and for both hemisphere (mirror symmetry). In absolute value scheme, each of RGB value can be expressed as follows. R=λw|Vx|, G=λw|Vy|, B=λw|Vz|, where (Vx, Vy, Vz) is eigenvector corresponding to the largest eigenvalue of diffusion tensor. With applying full symmetry or absolute value scheme, we can get more continuous color coding at the expense of coding same color for symmetric direction. For better visualization of fiber tract directions, Gamma and brightness correction had done. All of these implementations were done on the IDL 5.4 platform.

  • PDF

Generating Motion- and Distortion-Free Local Field Map Using 3D Ultrashort TE MRI: Comparison with T2* Mapping

  • Jeong, Kyle;Thapa, Bijaya;Han, Bong-Soo;Kim, Daehong;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.4
    • /
    • pp.328-340
    • /
    • 2019
  • Purpose: To generate phase images with free of motion-induced artifact and susceptibility-induced distortion using 3D radial ultrashort TE (UTE) MRI. Materials and Methods: The field map was theoretically derived by solving Laplace's equation with appropriate boundary conditions, and used to simulate the image distortion in conventional spin-warp MRI. Manufacturer's 3D radial imaging sequence was modified to acquire maximum number of radial spokes in a given time, by removing the spoiler gradient and sampling during both rampup and rampdown gradient. Spoke direction randomly jumps so that a readout gradient acts as a spoiling gradient for the previous spoke. The custom raw data was reconstructed using a homemade image reconstruction software, which is programmed using Python language. The method was applied to a phantom and in-vivo human brain and abdomen. The performance of UTE was compared with 3D GRE for phase mapping. Local phase mapping was compared with T2* mapping using UTE. Results: The phase map using UTE mimics true field-map, which was theoretically calculated, while that using 3D GRE revealed both motion-induced artifact and geometric distortion. Motion-free imaging is particularly crucial for application of phase mapping for abdomen MRI, which typically requires multiple breathold acquisitions. The air pockets, which are caught within the digestive pathway, induce spatially varying and large background field. T2* map, that was calculated using UTE data, suffers from non-uniform T2* value due to this background field, while does not appear in the local phase map of UTE data. Conclusion: Phase map generated using UTE mimicked the true field map even when non-zero susceptibility objects were present. Phase map generated by 3D GRE did not accurately mimic the true field map when non-zero susceptibility objects were present due to the significant field distortion as theoretically calculated. Nonetheless, UTE allows for phase maps to be free of susceptibility-induced distortion without the use of any post-processing protocols.

Study of Apparent Diffusion Coefficient Changes According to Spinal Disease in MR Diffusion-weighted Image

  • Heo, Yeong-Cheol;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.146-149
    • /
    • 2017
  • In this study, we compared the standardized value of each signal intensity, the apparent diffusion coefficient (ADC) that digitizes the diffusion of water molecules, and the signal to noise ratio (SNR) using b value 0 400, 1400 ($s/mm^2$). From March 2013 to December 2013, patients with suspicion of simple compound fracture and metastatic spine cancer were included in the MR readout. We used a 1.5 Tesla Achieva MRI system and a Syn-Spine Coil. Sequence is a DWI SE-EPI sagittal (diffusion weighted imaging spin echo-echo planar imaging sagittal) image with b-factor ($s/mm^2$) 0, 400, 1400 were used. Data analysis showed ROI (Region of Interest) in diseased area with high SI (signal intensity) in diffusion-weighted image b value 0 ($s/mm^2$) Using the MRIcro program, each SI was calculated with images of b-value 0, 400, and 1400 ($s/mm^2$), ADC map was obtained using Metlab Software with each image of b-value, The ADC is obtained by applying the ROI to the same position. The standardized values ($SI_{400}/SI_0$, $SI_{400}/SI_0$) of simple compression fractures were $0.47{\pm}0.04$ and $0.23{\pm}0.03$ and the standardized values ($SI_{400}/SI_0$, $SI_{400}/SI_0$) of the metastatic spine were $0.57{\pm}0.07$ and $0.32{\pm}0.08$ And the standardized values of the two diseases were statistically significant (p < 0.05). The ADC ($mm^2/s$) for b value 400 ($s/mm^2$) and 1400 ($s/mm^2$) of the simple compression fracture disease site were $1.70{\pm}0.16$ and $0.93{\pm}0.28$ and $1.24{\pm}0.21$ and $0.80{\pm}0.15$ for the metastatic spine. The ADC ($mm^2/s$) for b value 400($s/mm^2$) was statistically significant (p < 0.05) but the ADC ($mm^2/s$) for b value 1400 (p > 0.05). In conclusion, multi - b value recognition of signal changes in diffusion - weighted imaging is very important for the diagnosis of various spinal diseases.

A Study on MR Cholangiography using Breathing Hold Target Techniqu by Prospective Acquisition Correction and Respiration Trigger Gating (Non Breathe Hold Technique를 이용한 MR 담도계조영술에 대한 고찰 : Prospective Acquisition Correction(PACE)기법과 Respiration Trigger Gating(RTG) 기법의 비교)

  • Goo, Eun-Hee;Jeong, Hong-Ryang;Im, Cheong-Hwan;Kweon, Dae-Cheol;Jo, Jeong-Keun;Lee, Man-Koo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Recently, MR Cholangiography used mainly bu controlling of patient's breathing. There is breathing hold techniques to get images within shopt time and gating technique adjusted to respiration cycle for high resolution image. In this study, the aim of this experiment is to know on clinical usefulness compared with PACE and RTG thchniques. This study's period is from 2006 in November to 2007 in January. A total of 21 patients investigated at MAGNETOM Sonata 1.5T (SIEMENS Erlangen) with use of 12ch body coil. MR acquisition protocol used 3D turbo spin echo coronal sequence. Scan parameters applied to potimal setting in use as gating techniques, respectively. Analysis of consuming timing evaluated with rapidness. As analysis of quantity, the common bile duct, gall bladder measured in signal intensities, then these data were calculated by signal to noise ratio and contrast to noise ratio. Qualitative analysis, experienced 2radiologists and 3 RTs were evaluated into 3groups about artifact, accuracy of lesions, sharpness of the common bile duct or gall bladder. As a result of analysis, when compared to PACE, consuming time of the RTG took less than PACE, On both CNRs and SNRs, PACE technique was slightly high values than RTG(p<0.05). Qualitative analysis' results, discrimination of lesions in the common bile duct, gall bladder get a significance level in both RTG and PACE techniques but presence's artifact of breathing and pulsation highly demonstrate in PACE techniques. In conclusion, both PACE and RTG methods at MRCP provided prominently clinical information for the common bile duct, gall bladder. If machines have not limitation with performance, induction of breathing holding also will help getting diagnistic quality.

  • PDF

Current Status of X-ray CT Based Non Destructive Characterization of Bentonite as an Engineered Barrier Material (공학적방벽재로서 벤토나이트 거동의 X선 단층촬영 기반 비파괴 특성화 현황)

  • Diaz, Melvin B.;Kim, Joo Yeon;Kim, Kwang Yeom;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.400-414
    • /
    • 2021
  • Under high-level radioactive waste repository conditions, bentonite as an engineered barrier material undergoes thermal, hydrological, mechanical, and chemical processes. We report the applications of X-ray Computed Tomography (CT) imaging technique on the characterization and analysis of bentonite over the past decade to provide a reference of the utilization of this technique and the recent research trends. This overview of the X-ray CT technique applications includes the characterization of the bentonite either in pellets or powder form. X-ray imaging has provided a means to extract grain information at the microscale and identify crack networks responsible for the pellets' heterogeneity. Regarding samples of pellets-powder mixtures under hydration, X-ray CT allowed the identification and monitoring of heterogeneous zones throughout the test. Some results showed how zones with pellets only swell faster compared to others composed of pellets and powder. Moreover, the behavior of fissures between grains and bentonite matrix was observed to change under drying and hydrating conditions, tending to close during the former and open during the latter. The development of specializing software has allowed obtaining strain fields from a sequence of images. In more recent works, X-ray CT technique has served to estimate the dry density, water content, and particle displacement at different testing times. Also, when temperature was added to the hydration process of a sample, CT technology offered a way to observe localized and global density changes over time.

Contrast-Enhanced High-Resolution Intracranial Vessel Wall MRI with Compressed Sensing: Comparison with Conventional T1 Volumetric Isotropic Turbo Spin Echo Acquisition Sequence

  • Chae Jung Park;Jihoon Cha;Sung Soo Ahn;Hyun Seok Choi;Young Dae Kim;Hyo Suk Nam;Ji Hoe Heo;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.21 no.12
    • /
    • pp.1334-1344
    • /
    • 2020
  • Objective: Compressed sensing (CS) has gained wide interest since it accelerates MRI acquisition. We aimed to compare the 3D post-contrast T1-weighted volumetric isotropic turbo spin echo acquisition (VISTA) with CS (VISTA-CS) and without CS (VISTA-nonCS) in intracranial vessel wall MRIs (VW-MRI). Materials and Methods: From April 2017 to July 2018, 72 patients who underwent VW-MRI, including both VISTA-CS and VISTA-nonCS, were retrospectively enrolled. Wall and lumen volumes, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured from normal and lesion sites. Two neuroradiologists independently evaluated overall image quality and degree of normal and lesion wall delineation with a four-point scale (scores ≥ 3 defined as acceptable). Results: Scan coverage was increased in VISTA-CS to cover both anterior and posterior circulations with a slightly shorter scan time compared to VISTA-nonCS (approximately 7 minutes vs. 8 minutes). Wall and lumen volumes were not significantly different with VISTA-CS or VISTA-nonCS (interclass correlation coefficient = 0.964-0.997). SNR was or trended towards significantly higher values in VISTA-CS than in VISTA-nonCS. At normal sites, CNR was not significantly different between two sequences (p = 0.907), whereas VISTA-CS provided lower CNR in lesion sites compared with VISTA-nonCS (p = 0.003). Subjective wall delineation was superior with VISTA-nonCS than with VISTA-CS (p = 0.019), although overall image quality did not differ (p = 0.297). The proportions of images with acceptable quality were not significantly different between VISTA-CS (83.3-97.8%) and VISTA-nonCS (75-100%). Conclusion: CS may be useful for intracranial VW-MRI as it allows for larger scan coverage with slightly shorter scan time without compromising image quality.

Comparative Analysis of Quantitative Signal Intensity between 1.0 mol and 0.5 mol MR Contrast Agent (1.0 mol 과 0.5 mol MR조영제의 정량적 신호강도 비교분석)

  • Jeong, Hyun Keun;Jeong, Hyun Do;Nam, Ki Chang;Jang, Geun Yeong;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.134-141
    • /
    • 2015
  • The purpose on this research is quantitatively comparing and analyzing signal intensity of 1.0mol and 0.5mol contrast agent. For this study, two MR phantoms were produced. One of them is used with 1.0mol Gadobutrol. The other is used with 0.5mol Gadoteridol. These two phantoms respectively have been scanned by SE T1 sequence which is used to get a general contrast-enhanced image in 1.5T MRI and 3D FLASH sequence which is used as enhanced angio MRI. Signal intensity was measured by scanned images as per contrast agent dilution ratio. The results were as follow: RSP(Reaction Starting Point) of the two sequences(2D SE, 3D FLASH) was respectively 6.0%, 60.0% in 0.5mol contrast and 2.0%, 20.0% in 1.0mol contrast, which means in 0.5mol contrast, RSP was formed faster than the one in 1.0mol contrast. MPSI was respectively 1358.8[a.u], 1573[a.u] in 0.5mol contrast and 1374[a.u], 1642.4[a.u] in 1.0mol contrast, which means 0.5mol contrast's MPP (0.4%, 10.0%) was formed faster than 1.0mol contrast's MPP (0.16%, 1.8%). Lastly, RA as per contrast agent dilution ratio was 27.4%, 11.8% wider in 0.5mol contrast(20747.4[a.u], 23204.6[a.u]) than in 1.0mol contrast(12691.9[a.u], 20747.4[a.u]). According to the study, we are able to assure that signal reaction time of 1.0mol contrast is slower than the one of 0.5mol contrast in contrast-enhanced MRI at two different sequences(2D SE, 3D FLASH). Furthermore, owing to the fact that there are not any signal intensity differences between 1.0mol and 0.5mol contrast, it is not true that high concentration gadolinium MR contrast agent does not always mean high signal intensity in MRI.

Clinical Experience with 3.0 T MR for Cardiac Imaging in Patients: Comparison to 1.5 T using Individually Optimized Imaging Protocols (장비 별 최적화된 영상 프로토콜을 이용한 환자에서의 3.0T 심장 자기공명영상의 임상경험: 1.5 T 자기공명영상과의 비교)

  • Ko, Jeong Min;Jung, Jung Im;Lee, Bae Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.2
    • /
    • pp.83-90
    • /
    • 2013
  • Purpose : To report our clinical experience with cardiac 3.0 T MRI in patients compared with 1.5 T using individually optimized imaging protocols. Materials and Methods: We retrospectively reviewed 30 consecutive patients and 20 consecutive patients who underwent 1.5 T and 3 T cardiac MRI within 10 months. A comparison study was performed by measuring the signal-to-noise ratio (SNR), the contrast-to-noise ratio (CNR) and the image quality (by grading each sequence on a 5-point scale, regarding the presence of artifacts). Results: In morphologic and viability studies, the use of 3.0 T provided increase of the baseline SNRs and CNRs, respectively (T1: SNR 29%, p < 0.001, CNR 37%, p < 0.001; T2-SPAIR: SNR 13%, p = 0.068, CNR 18%, p = 0.059; viability imaging: SNR 45%, p = 0.017, CNR 37%, p = 0.135) without significant impairment of the image quality (T1: $3.8{\pm}0.9$ vs. $3.9{\pm}0.7$, p = 0.438; T2-SPAIR: $3.8{\pm}0.9$ vs. $3.9{\pm}0.5$, p = 0.744; viability imaging: $4.5{\pm}0.8$ vs. $4.7{\pm}0.6$, p = 0.254). Although the image qualities of 3.0 T functional cine images were slightly lower than those of 1.5 T images ($3.6{\pm}0.7$ vs. $4.2{\pm}0.6$, p < 0.001), the mean SNR and CNR at 3.0 T were significantly improved (SNR 143% increase, CNR 108% increase, p < 0.001). With our imaging protocol for 3.0 T perfusion imaging, there was an insignificant decrease in the SNR (11% decrease, p = 0.172) and CNR (7% decrease, p = 0.638). However, the overall image quality was significantly improved ($4.6{\pm}0.5$ vs. $4.0{\pm}0.8$, p = 0.006). Conclusion: With our experience, 3.0 T MRI was shown to be feasible for the routine assessment of cardiac imaging.

Female External Genitalia and Urethra on MR Imaging: Optimal Pulse Sequence and Comparison of Anatomy in Premenopausal and Postmenopausal Women (여성 외부 생식기와 요도의 자기공명영상 소견: 적합한 영상기법과 폐경 전후의 해부학적 변화 비교)

  • Whang, Shin-Young;Ahn, Kyung-Sik;Sung, Deuk-Jae;Park, Beom-Jin;Kim, Min-Ju;Cho, Sung-Bum;Lee, Nam-Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • Purpose : To describe normal anatomy and compare the differences of external genital organs and urethra on MR imaging in pre- and postmenopausal women. Materials and Methods : A total of 19 pre- and 18 postmenopausal healthy women underwent pelvis MR imaging at 1.5 T. Two radiologists retrospectively scored and compared the image quality of female external genitalia and urethra on axial T2-weighted images (T2WI) and axial fat-suppressed contrast-enhanced T1-weighted images (FSCE-T1WI) by using Wilcoxon signed ranks test. The radiologists compared the wall thickness or size of external genital organs and urethra on FSCE-T1WI between two groups by using Student t test. Results : Image quality was better with FSCE-T1WI than with T2WI in all subjects (p < 0.05). The vestibular bulb, clitoris and labium minor were more clearly visualized on FSCE-T1WI in premenopausal subjects rather than in postmenopausal subjects (p < 0.05). The urethra had a target-like appearance with three layers in premenopausal and postmenopausal subjects. Postmenopausal subjects were observed to have significantly smaller vaginal wall thickness, urethral wall thickness and vestibular bulb width than premenopausal subjects (p < 0.05). Conclusion : The anatomy and morphologic changes of female external genital organs and urethra were well discernible on FSCE-T1WI.