• Title/Summary/Keyword: separation of mixtures

Search Result 310, Processing Time 0.038 seconds

Hydrogen Separation from Binary and Ternary Mixture Gases by Pressure Swing Adsorption (PSA 공정에 의한 이성분 및 삼성분 혼합기체로부터 수소분리)

  • Kang, Seok-Hyun;Jeong, Byung-Man;Choi, Hyun-Woo;Ahn, Eui-Sub;Jang, Seong-Cheol;Kim, Sung-Hyun;Lee, Byung-Kwon;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.728-739
    • /
    • 2005
  • An experiment and simulation were performed for hydrogen separation of mixtures by PSA (pressure swing adsorption) process on activated carbon. The binary ($H_2/Ar$; 80%/ 20%) and ternary ($H_2/Ar/CH_4$; 60%/ 20%/ 20%) mixtures were used to study the effects of feed composition. The cyclic performances such as purity, recovery, and productivity of 2bed-6step PSA process were experimentally and theoretically compared under non-isothermal and non-adiabatic conditions. The develped process produced the hydrogen with 99% purity and 75% recovery from both processes. Therefore, optimal separation condition was referred multicomponent gas mixtures.

Fabrication of triazine-based Porous Aromatic Framework (PAF) membrane with structural flexibility for gas mixtures separation

  • Wang, Lei;Jia, Jiangtao;Faheem, Muhammad;Tian, Yuyang;Zhu, Guangshan
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.373-379
    • /
    • 2018
  • A transparent, freestanding Porous Aromatic Framework-97 (PAF-97) membrane was successfully synthesized via a one-step acid-catalyzed reaction. Due to the introduction of ether groups, the obtained PAF-97 membrane possesses enhanced structural flexibility, thus increasing the flexibility of the resulting membrane. This is proofed by the fact that the feeding pressure of the membrane reaches as high as 5.5 bar during the separation of gas mixtures. The Young's moduli of the membrane were 6.615 GPa and 11.11 GPa, either in a dry or hydrated state respectively. To be highlighted, under a feeding pressure of 3.6 bar, the PAF-97 membrane rendered the permeance values of $2.90{\times}10^{-7}$, $1.29{\times}10^{-8}mol\;m^{-2}s^{-1}Pa^{-1}$ for $CO_2$ and $CH_4$, respectively, with a $CO_2/CH_4$ permselectivity of 22.48.

The Inhibition Effect of Phase Separation by addition of MTBE and Inhibitors in the Gasohol (MTBE 및 상분리 억제제에 의한 가소홀의 상분리 억제 효과)

  • Lee, Jin-Hui;Kim, Mi-Hyun;Lee, Jin-Hee;Ahn, Moon-Sung;Won, Jin-Ok;Han, Geu-Seong;Seo, Dong-Ho;Lee, Moon-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.252-256
    • /
    • 2008
  • We investigated phase separation by adding different concentrations of MTBE, to the mixtures of naphtha, ethanol and water. The phase separation temperatures of the Naphtha-Ethanol-Water solutions have dropped when the concentration of MTBE increases more. When adding IPA and IBA to the solutions of Gasoline-Ethanol and Gasoline base-Ethanol individually, IBA shows lower temperatures of phase separation than IPA, and it shows synergistic effect when mixtures of IPA and IBA is applied.

Pervaporation Separation of Water/Ethanol Mixtures through PBMA/anionic PAA IPN Membrane

  • Jin, Young-Sub;Kim, Sung-Chul
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.86-87
    • /
    • 1996
  • IPN (Interpenetrating Polymer Network) is a mixture of two or more crosslinked polymers with physically interlocked network structures between the component polymers. IPN can be classified as an alloy of thermosets and has the characteristics of thermosets such as the thermal resistance and chemical resistance and also has the characteristics of polymer alloys with enhanced impact resistance and amphoteric properties. The physical interlocking during the synthesis restricts the phase separation of the component polymer with chemical pinning process, thus the control of morphology is possible through variations of the reaction temperature and pressure, catalyst concentration and crosslinking agent concentration. Finely dispersed domain structure can be obtained through IPN synthesis of polymer components with gross immiscibility. In membrane applications, particularly for the separation of liquid mixtures, crosslinked polymer component with specific affinity to the permeate is needed. With the presence of the permeant-inert polymer component, the mechanical strength and the selectivity of the membranes are enhanced by restricting the swelling of the transporting polymer component networks.

  • PDF

Changes in Facilitated Transport Behavior of Silver Polymer Electrolytes by UV Irradiation

  • Jongok Won;Yosang Yoon;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.80-84
    • /
    • 2002
  • Silver species other than the silver ion were formed by UV irradiation on polymer electrolyte membranes containing silver salts and their effect on complexation behavior between the silver and olefin was investigated through the separation performance of olefin/paraffin mixtures. The ideal propylene/propane separation factor reached 350 and the separation coefficient was ca.15 due to the high loading amount of silver ions into poly(2-ethyl-2-oxazoline) (POZ) without UV irradiation. On UV irradiation either in air or under nitrogen, the silver-POZ membranes became yellow-brown initially due to the formation of colloidal silver particles, and finally black and metal-like luster. Even when Ag$^{+}$ was converted, to some extent, to Ag$^{\circ}$ by UV irradiation in air at the early stage, the separation coefficient of olefin/paraffin mixtures was maintained. This suggests that silver species other than the silver ion is active for olefin carrier for facilitated transport. Meanwhile the steady decrease of the separation coefficient was observed in the silver/POZ membranes irradiated under $N_2$. It is suggested that the reduction of silver ions in POZ goes through a different photoreduction mechanism with UV irradiation depending on the environment.t.

Thermodynamic Incompatibility of Food Macromolecules (식품 거대분자의 열역학적 비혼합성)

  • 황재관;최문정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.5
    • /
    • pp.1019-1025
    • /
    • 1998
  • Proteins and polysaccharides are major food macromolecules. Generally, the mixture of these macromolecules can be separated into two phases because of their thermodynamic incompatibility. Phase separ-ation is explained by equilibrium phase diagram, which comprises binodal curve, critical point, phase separation threshold, tie-line and rectilinear diameter. Phase separation of protein-polysacc-haride solution is affected by pH, temperature, ionic strength, molecular weight, molecular structure, etc. Membraneless osmosis has been developed to concentrate protein solutions, using the phase diagram constituted by proteins and polysaccharides. Protein-polysaccharide mixtures are very promising fat mimetics because solution of mixtures forms water-continuous system with two phase-separated gels, which give plastic texture and a fatty mouthfeel.

  • PDF

Pervaporation Separation of Water from Aqueous TFEA Solution by NaY Zeolite Membrane

  • Jeon, Hyun-Soo;Ahn, Hyo-Seong;Lee, Young-Jin;Song, In-Ho;Lee, Hyer-Yeon;Lee, Yong-Taek;Park, In-Jun;Lee, Soo-Bok
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.31-35
    • /
    • 2006
  • Pervaporation of water/2,2,2-trifluoroethanol (TFEA) mixtures was performed using a NaY zeolite membrane which was prepared by a hydrothermal synthesis. Pervaporation with a zeolite membrane is one of the economic separation technologies for liquid mixtures including organic/water solutions. The effects of a TFEA feed concentration and a temperature were studied on the permeation flux and the separation factor. Not only the water flux increased significantly with the increase of the operating temperature, but also the TFEA flux through the NaY zeolite membrane rapidly increased with the increase of the temperature at the feed concentration below 0.8 mole fraction of TFEA.

Pervaporation Separation of Binary Organic-Aqueous Liquid Mixtures

  • Rhim, Ji-Won;Huang, Robert Y.M.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.10a
    • /
    • pp.1-3
    • /
    • 1991
  • A novel membrane separation process for the separation of liquid mixture is Pervaporation. The term, 'pervaporation', is a combination of permeation and evaporation, and was first introduced by kober[1] in 1917. In this technique, the liquid mixture in feed is in contact with one side of a dense non-porous membrane and after diffusing through the membrane is removed from the downstream side in the vapor phase, but is usually condensed afterwards to obtain a permeate in liquid from.

  • PDF