• Title/Summary/Keyword: separately excited dc motor

Search Result 23, Processing Time 0.023 seconds

The Energy Saving for Separately Excited DC Motor Drive via Model Based Method

  • Udomsuk, Sasiya;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.470-479
    • /
    • 2016
  • The model based method for energy saving of the separately excited DC motor drive system is proposed in the paper. The accurate power loss model is necessary for this method. Therefore, the adaptive tabu search algorithm is applied to identify the parameters in the power loss model. The field current values for minimum power losses at any load torques and speeds are calculated by the proposed method. The rule based controller is used to control the field current and speed of the motor. The experimental results confirm that the model based method can successfully provide the energy saving for separately excited DC motor drive. The maximum value of the energy saving is 48.61% compared with the conventional drive method.

Computer-based Automated System for Determining the Characteristics, Losses and Efficiency of Separately Excited DC Motors

  • Kaur, Puneet;Chatterji, S.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.440-447
    • /
    • 2012
  • This paper provides essential information on research completed with the aim to develop a 'dc motor test and analysis platform' which can be used to provide dc motor characteristics, calculate losses and efficiency, and also work as a dc motor speed controller. A user can test a given dc motor for these analyses by practicing different conventional methods, but, the concept discussed in this paper, reveals how intelligent integration of all these analyses can be done with a single user friendly automated setup. Integration has been accomplished by a technique that can accommodate all types of dc motors with different ratings at various loading conditions. However, experimentally measured results of a 0.5HP separately excited dc motor using the discussed scheme are presented in the paper. Also, a comparison of the methodology of this system with conventional techniques has also been elaborated on to show the effectiveness of the system.

Design of Robust Adaptive Backstepping Controller for Speed Control of Separately Excited DC Motor (타여자직류기의 속도제어를 위한 강인 적응 백스테핑 제어기 설계)

  • Hyun, Keun-Ho;Son, In-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.80-88
    • /
    • 2005
  • In this paper, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor with uncertainties and disturbances. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation and experiment results are provided to demonstrate the effectiveness of the proposed controller.

Design of a Speed Controller for the Separately Excited DC Motor in Application on Pure Electric Vehicles (순전기자동차용 타여자직류기의 속도제어기 설계)

  • Hyun, Keun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.6-12
    • /
    • 2007
  • In this paper, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor in pure electric vehicles. A general electric drive train of PEV is conceptually rearrange to major subsystems as electric propulsion, energy source, and auxiliary subsystem and the load torque is modeled by considering the aerodynamic, rolling resistance and grading resistance. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation results are provided to demonstrate the effectiveness of the proposed controller.

Four Quadrant Operations of DC Separately-Excited Motor by the Two Phase Chopper System with Combined Output (2상2중 쵸퍼방식에 의한 직류타여자전동기의 4상한동작)

  • 정연택;한경희;김용주;이승환;방이석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.349-356
    • /
    • 1990
  • In order to control DC motors for electric cars by chopper system, four quadrant operations - forward powering, forward regenerative braking, reverse powering, reverse regenerative braking - are needed. For the four quadrant operations, the separately - excited DC motors are used in this study. The conversion of each quadrant operation has been obtained by 1) adopting the two phase chopper system with combined output for the armature control, and 2) the single phase chopper system for the field control.

  • PDF

High Efficiency Tracking Drive in DC Motor by Field Winding Switching Method (계자권선 절환에 의한 직류전동기의 고효율 추종 운전)

  • Yoon, Ki-Jeong;Kim, Kwang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.493-496
    • /
    • 1997
  • This paper constructed the experimental system which is able to drive in series or separately excited by switching of the field winding, using a DC motor and obtained the characteristics of efficiency with speed and torque of each motor's type through the experiment. From this result controlled drive which is able to series DCM or separately excited DCM in the optimal point of efficiency as finding the types of motor having maximum efficiency with torque and speed. By performing high efficiency tracking drive, it is expected that energy consumption of power source with limited energy density would be reduced, and so utility efficiency would be improved.

  • PDF

Design of a Speed Controller for the Separately Excited DC Motor in Pure Electric Vehicle Applications (순 전기 자동차용 타여자 직류기의 속도제어기 설계)

  • Hyun, Keun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.181-184
    • /
    • 2006
  • In this study, an robust adaptive backstepping controller is proposed for the speed control of separately excited DC motor with uncertainties and disturbances. Armature and field resistance, damping coefficient and load torque are considered as uncertainties and noise generated at applying load torque to motor is also considered. It shows that the backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation and experiment results are provided to demonstrate the effectiveness of the proposed controller in the future.

  • PDF

Hybrid Speed Control of Separately Excited DC Motor (타여자직류기 (SEDM)의 복합속도제어)

  • Hyun, Keun-Ho;Hwang, Young-Ho;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2138-2139
    • /
    • 2002
  • In this paper we presents a speed controller for separately excited DC motor using adaptive backstepping technique. The motor was modeled in two local areas the first model is a linear one when speed is under base speed, the other is nonlinear one when field weakening is used to obtain the speed well above base speed. Then linear robust state feedback controller was designed for the linear model while adaptive backstepping controller was designed for the nonlinear model. The adaptive backstepping technique takes system nonlinearity into account in the control system design stage. The proposed controller is proved to be asymptotically stable by the Lyapunov stability theory and some simulations have been carried out to test.

  • PDF

Inverse Problem Methodology for Parameter Identification of a Separately Excited DC Motor

  • Hadef, Mounir;Mekideche, Mohamed Rachid
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.365-369
    • /
    • 2009
  • Identification is considered to be among the main applications of inverse theory and its objective for a given physical system is to use data which is easily observable, to infer some of the geometric parameters which are not directly observable. In this paper, a parameter identification method using inverse problem methodology is proposed. The minimisation of the objective function with respect to the desired vector of design parameters is the most important procedure in solving the inverse problem. The conjugate gradient method is used to determine the unknown parameters, and Tikhonov's regularization method is then used to replace the original ill-posed problem with a well-posed problem. The simulation and experimental results are presented and compared.

Adaptive Backstepping Controller Design for a Separately Excited DC Motor Using Speed Observer (속도관측기를 활용한 타여자직류전동기의 적응 백스테핑 제어기 설계)

  • Hyun Keun-Ho;Yang Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.385-392
    • /
    • 2003
  • A nonlinear speed controller for a separately excited DC motor (SEDCM) based on a newly developed adaptive backstepping approach is presented. To compensate parameter uncertainties and load torque disturbance, a nonlinear adaptive backstepping control law and adaptive law are derived systematically step by step through virtual control input and suitable Lyapunov function. Also, speed observer without using costly speed sensor is presented. Simulation results show that the proposed controller can observe real speed and track the reference speed signal generated by a reference model.