• Title/Summary/Keyword: separate learning

Search Result 200, Processing Time 0.024 seconds

Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling

  • Jiang, Tao;Wang, Xiu-qin;Ding, Chuan;Du, Xue-lian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.579-589
    • /
    • 2017
  • Anesthetics are used extensively in surgeries and related procedures to prevent pain. However, there is some concern regarding neuronal degeneration and cognitive deficits arising from regular anesthetic exposure. Recent studies have indicated that brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are involved in learning and memory processes. Genistein, a plant-derived isoflavone, has been shown to exhibit neuroprotective effects. The present study was performed to examine the protective effect of genistein against isoflurane-induced neurotoxicity in rats. Neonatal rats were exposed to isoflurane (0.75%, 6 hours) on postnatal day 7 (P7). Separate groups of rat pups were orally administered genistein at doses of 20, 40, or 80 mg/kg body weight from P3 to P15 and then exposed to isoflurane anesthesia on P7. Neuronal apoptosis was detected by TUNEL assay and FluoroJade B staining following isoflurane exposure. Genistein significantly reduced apoptosis in the hippocampus, reduced the expression of proapoptotic factors (Bad, Bax, and cleaved caspase-3), and increased the expression of Bcl-2 and Bcl-xL. RT-PCR analysis revealed enhanced BDNF and TrkB mRNA levels. Genistein effectively upregulated cAMP levels and phosphorylation of CREB and TrkB, leading to activation of cAMP/CREB-BDNF-TrkB signaling. PI3K/Akt signaling was also significantly activated. Genistein administration improved general behavior and enhanced learning and memory in the rats. These observations suggest that genistein exerts neuroprotective effects by suppressing isoflurane-induced neuronal apoptosis and by activating cAMP/CREB-BDNF-TrkB-PI3/Akt signaling.

Super Resolution by Learning Sparse-Neighbor Image Representation (Sparse-Neighbor 영상 표현 학습에 의한 초해상도)

  • Eum, Kyoung-Bae;Choi, Young-Hee;Lee, Jong-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2946-2952
    • /
    • 2014
  • Among the Example based Super Resolution(SR) techniques, Neighbor embedding(NE) has been inspired by manifold learning method, particularly locally linear embedding. However, the poor generalization of NE decreases the performance of such algorithm. The sizes of local training sets are always too small to improve the performance of NE. We propose the Learning Sparse-Neighbor Image Representation baesd on SVR having an excellent generalization ability to solve this problem. Given a low resolution image, we first use bicubic interpolation to synthesize its high resolution version. We extract the patches from this synthesized image and determine whether each patch corresponds to regions with high or low spatial frequencies. After the weight of each patch is obtained by our method, we used to learn separate SVR models. Finally, we update the pixel values using the previously learned SVRs. Through experimental results, we quantitatively and qualitatively confirm the improved results of the proposed algorithm when comparing with conventional interpolation methods and NE.

A Method to Improve the Performance of Adaboost Algorithm by Using Mixed Weak Classifier (혼합 약한 분류기를 이용한 AdaBoost 알고리즘의 성능 개선 방법)

  • Kim, Jeong-Hyun;Teng, Zhu;Kim, Jin-Young;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.457-464
    • /
    • 2009
  • The weak classifier of AdaBoost algorithm is a central classification element that uses a single criterion separating positive and negative learning candidates. Finding the best criterion to separate two feature distributions influences learning capacity of the algorithm. A common way to classify the distributions is to use the mean value of the features. However, positive and negative distributions of Haar-like feature as an image descriptor are hard to classify by a single threshold. The poor classification ability of the single threshold also increases the number of boosting operations, and finally results in a poor classifier. This paper proposes a weak classifier that uses multiple criterions by adding a probabilistic criterion of the positive candidate distribution with the conventional mean classifier: the positive distribution has low variation and the values are closer to the mean while the negative distribution has large variation and values are widely spread. The difference in the variance for the positive and negative distributions is used as an additional criterion. In the learning procedure, we use a new classifier that provides a better classifier between them by selective switching between the mean and standard deviation. We call this new type of combined classifier the "Mixed Weak Classifier". The proposed weak classifier is more robust than the mean classifier alone and decreases the number of boosting operations to be converged.

Investigation of Timbre-related Music Feature Learning using Separated Vocal Signals (분리된 보컬을 활용한 음색기반 음악 특성 탐색 연구)

  • Lee, Seungjin
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1024-1034
    • /
    • 2019
  • Preference for music is determined by a variety of factors, and identifying characteristics that reflect specific factors is important for music recommendations. In this paper, we propose a method to extract the singing voice related music features reflecting various musical characteristics by using a model learned for singer identification. The model can be trained using a music source containing a background accompaniment, but it may provide degraded singer identification performance. In order to mitigate this problem, this study performs a preliminary work to separate the background accompaniment, and creates a data set composed of separated vocals by using the proven model structure that appeared in SiSEC, Signal Separation and Evaluation Campaign. Finally, we use the separated vocals to discover the singing voice related music features that reflect the singer's voice. We compare the effects of source separation against existing methods that use music source without source separation.

Classification of 3D Road Objects Using Machine Learning (머신러닝을 이용한 3차원 도로객체의 분류)

  • Hong, Song Pyo;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.535-544
    • /
    • 2018
  • Autonomous driving can be limited by only using sensors if the sensor is blocked by sudden changes in surrounding environments or large features such as heavy vehicles. In order to overcome the limitations, the precise road-map has been used additionally. This study was conducted to segment and classify road objects using 3D point cloud data acquired by terrestrial mobile mapping system provided by National Geographic Information Institute. For this study, the original 3D point cloud data were pre-processed and a filtering technique was selected to separate the ground and non-ground points. In addition, the road objects corresponding to the lanes, the street lights, the safety fences were initially segmented, and then the objects were classified using the support vector machine which is a kind of machine learning. For the training data for supervised classification, only the geometric elements and the height information using the eigenvalues extracted from the road objects were used. The overall accuracy of the classification results was 87% and the kappa coefficient was 0.795. It is expected that classification accuracy will be increased if various classification items are added not only geometric elements for classifying road objects in the future.

Construction of a Spatio-Temporal Dataset for Deep Learning-Based Precipitation Nowcasting

  • Kim, Wonsu;Jang, Dongmin;Park, Sung Won;Yang, MyungSeok
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.135-142
    • /
    • 2022
  • Recently, with the development of data processing technology and the increase of computational power, methods to solving social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from multiple sources, but also coincides with each other in spatio-temporal specifications.

Single Image Super Resolution using sub-Edge Extraction based on Hierarchical Structure (계층적 보조 경계 추출을 이용한 단일 영상의 초해상도 기법)

  • Hyun Ho, Han
    • Journal of Digital Policy
    • /
    • v.1 no.2
    • /
    • pp.53-59
    • /
    • 2022
  • In this paper, we proposed a method using sub-edge information extracted through a hierarchical structure in the process of generating super resolution based on a single image. In order to improve the quality of super resolution, it is necessary to clearly distinguish the shape of each area while clearly expressing the boundary area in the image. The proposed method assists edge information of the image in deep learning based super resolution method to create an improved super resolution result while maintaining the structural shape of the boundary region, which is an important factor determining the quality in the super resolution process. In addition to the group convolution structure for performing deep learning based super resolution, a separate hierarchical edge accumulation extraction process based on high-frequency band information for sub-edge extraction is proposed, and a method of using it as an auxiliary feature is proposed. Experimental results showed about 1% performance improvement in PSNR and SSIM compared to the existing super resolution.

Malware Detection Technology Based on API Call Time Section Characteristics (API 호출 구간 특성 기반 악성코드 탐지 기술)

  • Kim, Dong-Yeob;Choi, Sang-Yong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.4
    • /
    • pp.629-635
    • /
    • 2022
  • Cyber threats are also increasing with recent social changes and the development of ICT technology. Malicious codes used in cyber threats are becoming more advanced and intelligent, such as analysis environment avoidance technology, concealment, and fileless distribution, to make analysis difficult. Machine learning technology is being used to effectively analyze these malicious codes, but a lot of effort is needed to increase the accuracy of classification. In this paper, we propose a malicious code detection technology based on API call interval characteristics to improve the classification performance of machine learning. The proposed technology uses API call characteristics for each section and entropy of binary to separate characteristic factors into sections based on the extraction malicious code and API call order of normal binary. It was verified that malicious code can be well analyzed using the support vector machine (SVM) algorithm for the extracted characteristic factors.

A Bi-directional Information Learning Method Using Reverse Playback Video for Fully Supervised Temporal Action Localization (완전지도 시간적 행동 검출에서 역재생 비디오를 이용한 양방향 정보 학습 방법)

  • Huiwon Gwon;Hyejeong Jo;Sunhee Jo;Chanho Jung
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.145-149
    • /
    • 2024
  • Recently, research on temporal action localization has been actively conducted. In this paper, unlike existing methods, we propose two approaches for learning bidirectional information by creating reverse playback videos for fully supervised temporal action localization. One approach involves creating training data by combining reverse playback videos and forward playback videos, while the other approach involves training separate models on videos with different playback directions. Experiments were conducted on the THUMOS-14 dataset using TALLFormer. When using both reverse and forward playback videos as training data, the performance was 5.1% lower than that of the existing method. On the other hand, using a model ensemble shows a 1.9% improvement in performance.

Effects of Expert-Determined Reference Standards in Evaluating the Diagnostic Performance of a Deep Learning Model: A Malignant Lung Nodule Detection Task on Chest Radiographs

  • Jung Eun Huh; Jong Hyuk Lee;Eui Jin Hwang;Chang Min Park
    • Korean Journal of Radiology
    • /
    • v.24 no.2
    • /
    • pp.155-165
    • /
    • 2023
  • Objective: Little is known about the effects of using different expert-determined reference standards when evaluating the performance of deep learning-based automatic detection (DLAD) models and their added value to radiologists. We assessed the concordance of expert-determined standards with a clinical gold standard (herein, pathological confirmation) and the effects of different expert-determined reference standards on the estimates of radiologists' diagnostic performance to detect malignant pulmonary nodules on chest radiographs with and without the assistance of a DLAD model. Materials and Methods: This study included chest radiographs from 50 patients with pathologically proven lung cancer and 50 controls. Five expert-determined standards were constructed using the interpretations of 10 experts: individual judgment by the most experienced expert, majority vote, consensus judgments of two and three experts, and a latent class analysis (LCA) model. In separate reader tests, additional 10 radiologists independently interpreted the radiographs and then assisted with the DLAD model. Their diagnostic performance was estimated using the clinical gold standard and various expert-determined standards as the reference standard, and the results were compared using the t test with Bonferroni correction. Results: The LCA model (sensitivity, 72.6%; specificity, 100%) was most similar to the clinical gold standard. When expert-determined standards were used, the sensitivities of radiologists and DLAD model alone were overestimated, and their specificities were underestimated (all p-values < 0.05). DLAD assistance diminished the overestimation of sensitivity but exaggerated the underestimation of specificity (all p-values < 0.001). The DLAD model improved sensitivity and specificity to a greater extent when using the clinical gold standard than when using the expert-determined standards (all p-values < 0.001), except for sensitivity with the LCA model (p = 0.094). Conclusion: The LCA model was most similar to the clinical gold standard for malignant pulmonary nodule detection on chest radiographs. Expert-determined standards caused bias in measuring the diagnostic performance of the artificial intelligence model.