• Title/Summary/Keyword: sentinel

Search Result 420, Processing Time 0.033 seconds

Analysis of Algal Bloom Occurrence Characteristics Namyang Lake using Sentinel-2 MSI (Sentinel-2 MSI를 활용한 남양 간척담수호의 조류발생 특성 분석)

  • Wonjin Jang;Jinuk Kim;Jiwan Lee;Yongeun Park;Seongjoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.56-56
    • /
    • 2023
  • 남양호는 농업용수 공급을 위해 건설된 하구 담수호로 과도한 영양물질 축적으로 인해 매년 여름 녹조류가 번성한다. 따라서 본 연구에서는 조류발생 특성을 분석하고자 식물성 플랑크톤 및 관련 분해 산물에 의해 고유 광학특성을 가지고 있는 Chlorophyll-a(Chl-a)의 추정을 통한 녹조 발생을 파악하고자 Sentinel-2 Multi Spectral Image(MSI)의 원격 반사율 광학 스펙트럼을 사용하였다. Chl-a 추정알고리즘 개발을 위하여 Sentinel-2 A, B의 교차 방문주기인 5일 간격에 맞추어 현장수질자료(2022년: 27회 2023년: 27회)를 측정하였다. Chl-a 농도는 EXO-YSI를이용하여 측정하였으며 해당기간동안 9.4 ~ 127.1 mg/L의 범위를 보였으며, Sentine-2 자료는 A, B자료에서 B1(443 nm) ~ B8A(865 nm)파장의 값을 기상조건(구름, 안개, 강수)을 고려하여 현장수질측정 위치에서 반사도를 추출하였다. 입력자료는 대기 및 방사영향을 고려해 반사도 간의 비율자료와 선행연구에서 활용된 반사도를 활용하였으며 알고리즘은 다중선형회귀분석(Multi Linear Regression Model)과 Random Forest를 활용하였다. MLR의 경우 결정계수(R2)가 학습 및 검증에서 각각 0.68, 0.59의 성능을 보였으며, RF의 경우 각각 0.94, 0.85의 성능을 보였다. 해당알고리즘으로 생성된 Chl-a 시공간농도 자료는 담수호내 조류발생 특성을 분석하고 효율적 조류관리 및 대처에 활용될 것으로 판단된다.

  • PDF

Estimation of Chlorophyll-a via harmonized landsat sentinel-2 (HLS) datasets (Harmonized Landsat Sentinel-2 (HLS) 위성자료를 활용한 클로로필-a 추정)

  • Jongmin Park
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.400-400
    • /
    • 2023
  • 급격한 기후변화로 인해 일사량, 지표면 온도 및 이산화탄소 농도가 꾸준히 상승함에 따라 수문 순환의 불균형을 초래함과 하천 및 호소 내 수질 또한 악화되고 있는 추세이다. 특히, 국내의 경우, 기후변화 및 인위적 요인에 의해 하천 및 호소에서의 수위 감소 및 수온 증가로 인해 부영양화가 증가되고 있고, 이로 인한 유해 녹조의 발생빈도를 높이는 결과를 초래한다. 현재 국내에서는 유인 수질 관측 및 자동 수질관측 시스템을 통해 주요 수질인자를 모니터링 하고 있으나 시·공간적인 변동성을 파악하는데 제한점이 있다. 이러한 한계점을 극복하기 위해 국·내외에서 광학위성을 이용한 수질인자 추정 알고리즘 개발과 관련된 연구들이 진행되고 있다. 이에 따라, 본 연구에서는 NASA에서 제공하는 Landsat-8 위성과 ESA에서 제공하는 Sentinel-2자료가 동화된 Harmonized Landsat Sentinel-2 위성자료를 활용한 클로로필-a (Chl-a)를 추정하고자 한다. 이를 위해, 본 연구에서는 1) 단순 회귀 분석, 2) Akaike information criteria (AIC) 기반 최적화 회귀 분석 및 3) Random forest (RF)를 활용하였다. 또한, HLS 위성 자료의 적용성을 평가하기 위해 미국 오하이오 주에 위치하고 있는 130여개의 중규모 및 대규모 호소에서 2000년부터 2021년까지 수집된 클로로필-a 관측치를 활용하였다. 두 가지 수질 추정 모형에 대한 정확도 검증에 앞서 오하이오 주 내에서의 클로로필-a의 시계열적 변동성에 대하여 분석하였다. 전반적으로, 2000년부터 2016년까지는 Chl-a가 꾸준히 증가하는 경향성을 나타내었으나, 그 이후로는 감소하는 추세를 나타내었다. 이를 기반으로, 각 방법론을 통해서 나온 Chl-a 추정치에 대해서 통계적 검증을 수행하였다. 결과, 단순 회귀 분석을 통해 추청된 Chl-a값의 결정계수는 0.34였지만, AIC 기반 모델과 RF모형을 사용한 결과 결정계수가 각각 0.82와 0.92로 향상된 것을 확인할 수 있었다. 이와 더불어, spatial 및 temporal window와 더불어 호소의 크기에 따른 정확도 분석 또한 수행하였다. 그 결과, temporal window 가 정확도에 가장 큰 영향을 미치는 것으로 나타났으며, 호소의 크기가 작을수록 정확도가 낮아지는 것을 확인 할 수 있었다. 본 연구의 결과를 토대로 추후 국내 호소에 대해 상기 모형들의 적용성 평가를 수행하여 효율적인 수질 모니터링 시스템 구축으로 이어질 수 있을 것으로 기대된다.

  • PDF

Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Deep Learning Regression Model (딥러닝 모형을 이용한 Sentinel SAR 기반 고해상도 토양수분 산정)

  • Lee, Taehwa;Kim, Sangwoo;Chun, Beomseok;Jung, Younghun;Shin, Yongchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.114-114
    • /
    • 2021
  • 본 연구에서는 Sentinel-1 SAR 센서 기반 이미지자료와 딥러닝기법을 이용하여 고해상도 토양수분을 산정하였다. 입력자료는 지표특성(모래함량, 점토함량, 경사도), 인공위성 기반의 강우와 LANDSAT 기반의 이미지자료(NDVI, LST, 공간분포 토양수분)를 사용하였다. 강우자료의 경우 GPM(Global Precipitation Measurement) 일강우 자료를 사용하였으며, 관측일 기준으로 5일전까지의 강우자료와 5일평균강우를 구분하여 사용하였다. LANDSAT 기반의 토양수분 이미지자료와 지점관측 토양수분을 이용하여 검·보정 이후 딥러닝 모형의 입력자료로 사용하였다. 입력자료는 30m × 30m 해상도로 Resample 하여 딥러닝 모형의 학습을 진행하였으며, 학습에 사용된 모형을 이용하여 Sentinel-1 기반의 고해상도(10m × 10m) 토양수분이미지를 산정하였다. 검증지점은 거창군 거창읍, 계룡시 두마면, 장수군 장수읍 및 무주군 무주읍 토양수분 관측지점을 선정하였다. 거창군 거창읍의 산정결과, LANDSAT 기반의 토양수분 이미지와 DNN 기반의 토양수분 이미지가 매우 유사하게 나타났으며, 모의값(DNN 기반 토양수분)이 실측값(LANDSAT 기반의 토양수분)을 잘 반영한 것(R: 0.875 ; RMSE: 0.013)으로 나타났다. 또한 학습모형을 토지피복이 유사한 지역에 적용하여 토양수분을 산정한 결과 검증지점 계룡시(R: 0.897 ; RMSE: 0.014), 장수군(R: 0.770 ; RMSE: 0.024) 및 무주군(R: 0.909 ; RMSE: 0.012)의 모의값이 실측값과 매우 유사한 것으로 나타났다. 이를 바탕으로 Seninel-1 SAR센서 이미지자료와 딥러닝기법을 연계한 고해상도 토양수분자료가 농업, 수문, 환경 등 다양한 분야에서 활용될 수 있을 것으로 판단된다.

  • PDF

Spatial Estimation of soil roughness and moisture from Sentinel-1 backscatter over Yanco sites: Artificial Neural Network, and Fractal

  • Lee, Ju Hyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.125-125
    • /
    • 2020
  • European Space Agency's Sentinel-1 has an improved spatial and temporal resolution, as compared to previous satellite data such as Envisat Advanced SAR (ASAR) or Advanced Scatterometer (ASCAT). Thus, the assumption used for low-resolution retrieval algorithms used by ENVISAT ASAR or ASCAT is not applicable to Sentinel-1, because a higher degree of land surface heterogeneity should be considered for retrieval. The assumption of homogeneity over land surface is not valid any more. In this study, considering that soil roughness is one of the key parameters sensitive to soil moisture retrievals, various approaches are discussed. First, soil roughness is spatially inverted from Sentinel-1 backscattering over Yanco sites in Australia. Based upon this, Artificial Neural Networks data (feedforward multiplayer perception, MLP, Levenberg-Marquadt algorithm) are compared with Fractal approach (brownian fractal, Hurst exponent of 0.5). When using ANNs, training data are achieved from theoretical forward scattering models, Integral Equation Model (IEM). and Sentinel-1 measurements. The network is trained by 20 neurons and one hidden layer, and one input layer. On the other hand, fractal surface roughness is generated by fitting 1D power spectrum model with roughness spectra. Fractal roughness profile is produced by a stochastic process describing probability between two points, and Hurst exponent, as well as rms heights (a standard deviation of surface height). Main interest of this study is to estimate a spatial variability of roughness without the need of local measurements. This non-local approach is significant, because we operationally have to be independent from local stations, due to its few spatial coverage at the global level. More fundamentally, SAR roughness is much different from local measurements, Remote sensing data are influenced by incidence angle, large scale topography, or a mixing regime of sensors, although probe deployed in the field indicate point data. Finally, demerit and merit of these approaches will be discussed.

  • PDF

Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images (Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발)

  • Kim, Sun-Hwa;Eun, Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.989-998
    • /
    • 2021
  • In the utilization of optical satellite imagery, which is greatly affected by clouds, periodic composite technique is a useful method to minimize the influence of clouds. Recently, a technique for selecting the optimal pixel that is least affected by the cloud and shadow during a certain period by directly inputting cloud and cloud shadow information during period compositing has been proposed. Accurate extraction of clouds and cloud shadowsis essential in order to derive optimal composite results. Also, in the case of an surface targets where spectral information is important, such as crops, the loss of spectral information should be minimized during cloud-free compositing. In thisstudy, clouds using two spectral indicators (Haze Optimized Tranformation and MeanVis) were used to derive a detection technique with low loss ofspectral information while maintaining high detection accuracy of clouds and cloud shadowsfor cabbage fieldsin the highlands of Gangwon-do. These detection results were compared and analyzed with cloud and cloud shadow information provided by Sentinel-2A/B. As a result of analyzing data from 2019 to 2021, cloud information from Sentinel-2A/B satellites showed detection accuracy with an F1 value of 0.91, but bright artifacts were falsely detected as clouds. On the other hand, the cloud detection result obtained by applying the threshold (=0.05) to the HOT showed relatively low detection accuracy (F1=0.72), but the loss ofspectral information was minimized due to the small number of false positives. In the case of cloud shadows, only minimal shadows were detected in the Sentinel-2A/B additional layer, but when a threshold (= 0.015) was applied to MeanVis, cloud shadowsthat could be distinguished from the topographically generated shadows could be detected. By inputting spectral indicators-based cloud and shadow information,stable monthly cloud-free composited vegetation index results were obtained, and in the future, high-accuracy cloud information of Sentinel-2A/B will be input to periodic cloud-free composite for comparison.

Water resources monitoring technique using multi-source satellite image data fusion (다종 위성영상 자료 융합 기반 수자원 모니터링 기술 개발)

  • Lee, Seulchan;Kim, Wanyub;Cho, Seongkeun;Jeon, Hyunho;Choi, Minhae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.497-508
    • /
    • 2023
  • Agricultural reservoirs are crucial structures for water resources monitoring especially in Korea where the resources are seasonally unevenly distributed. Optical and Synthetic Aperture Radar (SAR) satellites, being utilized as tools for monitoring the reservoirs, have unique limitations in that optical sensors are sensitive to weather conditions and SAR sensors are sensitive to noises and multiple scattering over dense vegetations. In this study, we tried to improve water body detection accuracy through optical-SAR data fusion, and quantitatively analyze the complementary effects. We first detected water bodies at Edong, Cheontae reservoir using the Compact Advanced Satellite 500(CAS500), Kompsat-3/3A, and Sentinel-2 derived Normalized Difference Water Index (NDWI), and SAR backscattering coefficient from Sentinel-1 by K-means clustering technique. After that, the improvements in accuracies were analyzed by applying K-means clustering to the 2-D grid space consists of NDWI and SAR. Kompsat-3/3A was found to have the best accuracy (0.98 at both reservoirs), followed by Sentinel-2(0.83 at Edong, 0.97 at Cheontae), Sentinel-1(both 0.93), and CAS500(0.69, 0.78). By applying K-means clustering to the 2-D space at Cheontae reservoir, accuracy of CAS500 was improved around 22%(resulting accuracy: 0.95) with improve in precision (85%) and degradation in recall (14%). Precision of Kompsat-3A (Sentinel-2) was improved 3%(5%), and recall was degraded 4%(7%). More precise water resources monitoring is expected to be possible with developments of high-resolution SAR satellites including CAS500-5, developments of image fusion and water body detection techniques.

Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML (Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원)

  • Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1341-1352
    • /
    • 2023
  • The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.

Land Masking Methods of Sentinel-1 SAR Imagery for Ship Detection Considering Coastline Changes and Noise

  • Bae, Jeongju;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.437-444
    • /
    • 2017
  • Since land pixels often generate false alarms in ship detection using Synthetic Aperture Radar (SAR), land masking is a necessary step which can be processed by a land area map or water database. However, due to the continuous coastline changes caused by newport, bridge, etc., an updated data should be considered to mask either the land or the oceanic part of SAR. Furthermore, coastal concrete facilities make noise signals, mainly caused by side lobe effect. In this paper, we propose two methods. One is a semi-automatic water body data generation method that consists of terrain correction, thresholding, and median filter. Another is a dynamic land masking method based on water database. Based on water database, it uses a breadth-first search algorithm to find and mask noise signals from coastal concrete facilities. We verified our methods using Sentinel-1 SAR data. The result shows that proposed methods remove maximum 84.42% of false alarms.

SENTINEL ASIA FOR ENVIRONMENT (SAFE)

  • Takeuchi, Wataru;Akatsuka, Shin;Nagano, Tsugito;Samarakoon, Lal
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.402-405
    • /
    • 2008
  • This paper is a proposal of Sentinel Asia for Environment (SAFE). The essential to this project is to help environmental agencies in Asia to set up an environmental monitoring system with satellite observation data. It is focused on an environmental issues originated from anthropogenic events detected as land cover and land use change in Asians' daily human life including; agriculture, global warming gas, urban environment and forest resources. It is leaded by Japan Aerospace Exploration Agency (JAXA) along with University of Tokyo and Asian Institute of Technology in Thailand under the umbrella of Sentinel Asia which is dedicated to disaster monitoring issues. It is expected to initiate a information outgoing through WWW for Asian countries to set up their national land information system focusing on environmental changes.

  • PDF

Performance of Random Forest Classifier for Flood Mapping Using Sentinel-1 SAR Images

  • Chu, Yongjae;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.375-386
    • /
    • 2022
  • The city of Khartoum, the capital of Sudan, was heavily damaged by the flood of the Nile in 2020. Classification using satellite images can define the damaged area and help emergency response. As Synthetic Aperture Radar (SAR) uses microwave that can penetrate cloud, it is suitable to use in the flood study. In this study, Random Forest classifier, one of the supervised classification algorithms, was applied to the flood event in Khartoum with various sizes of the training dataset and number of images using Sentinel-1 SAR. To create a training dataset, we used unsupervised classification and visual inspection. Firstly, Random Forest was performed by reducing the size of each class of the training dataset, but no notable difference was found. Next, we performed Random Forest with various number of images. Accuracy became better as the number of images in creased, but converged to a maximum value when the dataset covers the duration from flood to the completion of drainage.