Kim, Heung-Min;Bak, Suho;Han, Jeong-ik;Ye, Geon Hui;Jang, Seon Woong
Korean Journal of Remote Sensing
/
v.38
no.6_1
/
pp.1109-1124
/
2022
This study proposes a marine debris monitoring methods using satellite and drone multispectral images. A multi-layer perceptron (MLP) model was applied to detect marine debris using Sentinel-2 satellite image. And for the detection of marine debris using drone multispectral images, performance evaluation and comparison of U-Net, DeepLabv3+ (ResNet50) and DeepLabv3+ (Inceptionv3) among deep learning models were performed (mIoU 0.68). As a result of marine debris detection using satellite image, the F1-Score was 0.97. Marine debris detection using drone multispectral images was performed on vegetative debris and plastics. As a result of detection, when DeepLabv3+ (Inceptionv3) was used, the most model accuracy, mean intersection over union (mIoU), was 0.68. Vegetative debris showed an F1-Score of 0.93 and IoU of 0.86, while plastics showed low performance with an F1-Score of 0.5 and IoU of 0.33. However, the F1-Score of the spectral index applied to generate plastic mask images was 0.81, which was higher than the plastics detection performance of DeepLabv3+ (Inceptionv3), and it was confirmed that plastics monitoring using the spectral index was possible. The marine debris monitoring technique proposed in this study can be used to establish a plan for marine debris collection and treatment as well as to provide quantitative data on marine debris generation.
Kim, Taeheon;Yun, Yerin;Lee, Changhui;Han, Youkyung
Korean Journal of Remote Sensing
/
v.38
no.6_4
/
pp.1901-1910
/
2022
Arriving in the new space age, securing technology for fusion application of KOMPSAT-3·3A and global satellite images is becoming more important. In general, multi-sensor satellite images have relative geometric errors due to various external factors at the time of acquisition, degrading the quality of the satellite image outputs. Therefore, we propose a fine-image registration methodology to minimize the relative geometric error between KOMPSAT-3·3A and global satellite images. After selecting the overlapping area between the KOMPSAT-3·3A and foreign satellite images, the spatial resolution between the two images is unified. Subsequently, tie-points are extracted using a hybrid matching method in which feature- and area-based matching methods are combined. Then, fine-image registration is performed through iterative registration based on pyramid images. To evaluate the performance and accuracy of the proposed method, we used KOMPSAT-3·3A, Sentinel-2A, and PlanetScope satellite images acquired over Daejeon city, South Korea. As a result, the average RMSE of the accuracy of the proposed method was derived as 1.2 and 3.59 pixels in Sentinel-2A and PlanetScope images, respectively. Consequently, it is considered that fine-image registration between multi-sensor satellite images can be effectively performed using the proposed method.
The purpose of this research is to propose the measurement of improving DEM by using the water surface range of SAR image analysis for river corridors and to suggest the construction of satellite-based 3D river spatial information of inaccessible regions such as North Korea. For this research, it has been progressed from the accessible area, watershed of Namgang river, the branch of Nakdonggang river. The satellite image was collected from SAR satellite image data for a year in 2021 which was provided by ESA from Sentinel-1A/B data and extracted from the seasonal water surface area. Ground gauge water level was collected from hourly intervals data by WAMIS. The DEM was improved by analysis of the river altitude of water surface area change by the combination of the ground water level of minimum to maximum water surface area data extracted from SAR image analysis. After the improvement of DEM, the altitude of the river varied that it is defined to comprise more natural form of river DEM than the existing DEM. The correction validation of improvement DEM was necessary in field survey elevation data; however, the correction validation was not progressed due to the absence of the data. Although, the purpose of this research is to provide the improvement of DEM by using the analyzed water surface by existing DEM data and SAR image analysis. After the progression of additional correction validation research, we would plan to examine the application in other places and to progress the additional methodological research to apply in inaccessible and unmeasured area including the North Korea.
Jung, Jiyoung;Jang, Hyeon June;Kim, Sung Hoon;Choi, Young Don;Yi, Hye-Suk;Choi, Sunghwa
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.42-42
/
2022
지금까지도 유역에서의 녹조 모니터링은 현장채수를 통한 점 단위 모니터링에 크게 의존하고 있어 기후, 유속, 수온조건 등에 따라 수체에 광범위하게 발생하는 녹조를 효율적으로 모니터링하고 대응하기에는 어려운 점들이 있어왔다. 또한, 그동안 제한된 관측 데이터로 인해 현장 측정된 실측 데이터 보다는 녹조와 관련이 높은 NDVI, FGAI, SEI 등의 파생적인 지수를 산정하여 원격탐사자료와 매핑하는 방식의 분석연구 등이 선행되었다. 본 연구는 녹조의 모니터링시 정확도와 효율성을 향상을 목표로 하여, 우선은 녹조 측정장비를 활용, 7000개 이상의 녹조 관측 데이터를 확보하였으며, 이를 바탕으로 동기간의 고해상도 위성 자료와 실측자료를 매핑하기 위해 다양한Machine Learning기법을 적용함으로써 그 효과성을 검토하고자 하였다. 연구대상지는 낙동강 내성천 상류에 위치한 영주댐 유역으로서 데이터 수집단계에서는 면단위 현장(in-situ) 관측을 위해 2020년 2~9월까지 4회에 걸쳐 7291개의 녹조를 측정하고, 동일 시간 및 공간의 Sentinel-2자료 중 Band 1~12까지 총 13개(Band 8은 8과 8A로 2개)의 분광특성자료를 추출하였다. 다음으로 Machine Learning 분석기법의 적용을 위해 algae_monitoring Python library를 구축하였다. 개발된 library는 1) Training Set과 Test Set의 구분을 위한 Data 준비단계, 2) Random Forest, Gradient Boosting Regression, XGBoosting 알고리즘 중 선택하여 적용할 수 있는 모델적용단계, 3) 모델적용결과를 확인하는 Performance test단계(R2, MSE, MAE, RMSE, NSE, KGE 등), 4) 모델결과의 Visualization단계, 5) 선정된 모델을 활용 위성자료를 녹조값으로 변환하는 적용단계로 구분하여 영주댐뿐만 아니라 다양한 유역에 범용적으로 적용할 수 있도록 구성하였다. 본 연구의 사례에서는 Sentinel-2위성의 12개 밴드, 기상자료(대기온도, 구름비율) 총 14개자료를 활용하여 Machine Learning기법 중 Random Forest를 적용하였을 경우에, 전반적으로 가장 높은 적합도를 나타내었으며, 적용결과 Test Set을 기준으로 NSE(Nash Sutcliffe Efficiency)가 0.96(Training Set의 경우에는 0.99) 수준의 성능을 나타내어, 광역적인 위성자료와 충분히 확보된 현장실측 자료간의 데이터 학습을 통해서 조류 모니터링 분석의 효율성이 획기적으로 증대될 수 있음을 확인하였다.
A various technology of remote sensing and image analysis are applied to study landscape changes and their influencing factors in stream corridors. We developed a method to detect landscape changes over time by calculating the optical index using multispectral images taken from satellites at various time points, calculating the threshold to delineate the boundaries of water bodies, and creating binarized maps into land and water areas. This method was applied to the upstream reach of the weirs in the Geumgang River to track changes in the sandbar formed by the opening of the weir gate. First, we collected multispectral images with a resolution of 10 m × 10 m taken from the Sentinel-2 satellite at various times before and after the opening of the dam in the Geumgang River. The normalized difference water index (NDWI) was calculated using the green light and near-infrared bands from the collected images. The Otsu's threshold of NDWI calculated to delineate the boundary of the water body ranged from -0.0573 to 0.1367. The boundary of the water area determined by remote sensing matched the boundary in the actual image. A map binarized into water and land areas was created using NDWI and the Otsu's threshold. According to these results of the developed method, it was estimated that a total of 379.7 ha of new sandbar was formed by opening the three weir floodgates from 2017 to 2021 in the longitudinal range from Baekje Weir to Daecheong Dam on the Geumgang River. The landscape detection method developed in this study is evaluated as a useful method that can obtain objective results with few resources over a wide spatial and temporal range.
Joon-Woo Lee;Yu-Han Han;Jeong-Taek Lee;Jin-Hyuk Park;Geun-Han Kim
Korean Journal of Remote Sensing
/
v.39
no.6_3
/
pp.1721-1730
/
2023
As awareness of the problem of global warming emerges around the world, the role of carbon sinks in settlement is increasingly emphasized to achieve carbon neutrality in urban areas. In order to manage carbon sinks in settlement, it is necessary to identify the current status of carbon sinks. Identifying the status of carbon sinks requires a lot of manpower and time and a corresponding budget. Therefore, in this study, a map predicting the location of trees was created using already established tree location information and Sentinel-2 satellite images targeting Seoul. To this end, after constructing a tree presence/absence dataset, structured data was generated using 16 types of vegetation indices information constructed from satellite images. After learning this by applying the Extreme Gradient Boosting (XGBoost) model, a tree prediction map was created. Afterward, the correlation between independent and dependent variables was investigated in model learning using the Shapely value of Shapley Additive exPlanations(SHAP). A comparative analysis was performed between maps produced for local parts of Seoul and sub-categorized land cover maps. In the case of the tree prediction model produced in this study, it was confirmed that even hard-to-detect street trees around the main street were predicted as trees.
The purpose of this study is to analyze whether pervious and impervious areas in urban areas affect tree growth. In order to determine the differences in the growth of six species of trees planted simultaneously, the effects of pervious and impervious surfaces on tree growth were analyzed using the Normalized Difference Vegetation Index (NDVI) produced using Sentinel-2 and sub-divided land cover map from the Ministry of Environment. For this purpose, the Geospatial eXplainable Artificial Intelligence(GeoXAI) concept was applied. As a result of the analysis, the explanatory power of the model was found to be the best when considering the area of land cover included in the 10m range for Pinus densiflora, the 20 m range for Zelkova Serrata, Metasequoia glyptostroboides, and Ginkgo biloba, the 30 m range for Platanus occidentalis, and the 40 m range for Yoshino cherry trees. In addition, the wider the pervious area, the more active the growth of trees,showing a positive correlation, and the wider the impervious area, such as nearby artificial ground, showed a negative correlation with tree growth. This shows that surrounding pervious and impervious areas affect the growth of trees and that the scope of influence varies depending on the tree species.
The increasing interest in soil moisture data from satellite imagery for applications in hydrology, meteorology, and agriculture has led to the development of methods to produce variable-resolution soil moisture maps. Research on accurate soil moisture estimation using satellite imagery is essential for remote sensing applications. The purpose of this study is to generate a soil moisture estimation map for a test area using KOMPSAT-3/3A and KOMPSAT-5 SAR imagery and to quantitatively compare the results with soil moisture data from the Soil Moisture Active Passive (SMAP) mission provided by NASA, with a focus on accuracy validation. In addition, the Korean Environmental Geographic Information Service (EGIS) land cover map was used to determine soil moisture, especially in agricultural and forested regions. The selected test area for this study is the western part of Jeju, South Korea, where input data were available for the soil moisture estimation algorithm based on the Water Cloud Model (WCM). Synthetic Aperture Radar (SAR) imagery from KOMPSAT-5 HV and Sentinel-1 VV were used for soil moisture estimation, while vegetation indices were calculated from the surface reflectance of KOMPSAT-3 imagery. Comparison of the derived soil moisture results with SMAP (L-3) and SMAP (L-4) data by differencing showed a mean difference of 4.13±3.60 p% and 14.24±2.10 p%, respectively, indicating a level of agreement. This research suggests the potential for producing highly accurate and precise soil moisture maps using future South Korean satellite imagery and publicly available data sources, as demonstrated in this study.
Time-series data generated from satellite data are crucial resources for change detection and monitoring across various fields. Existing research in time-series data generation primarily relies on single-image analysis to maintain data uniformity, with ongoing efforts to enhance spatial and temporal resolutions by utilizing diverse image sources. Despite the emphasized significance of time-series data, there is a notable absence of automated data collection and preprocessing for research purposes. In this paper, to address this limitation, we propose a system that automates the collection of satellite information in user-specified areas to generate time-series data. This research aims to collect data from various satellite sources in a specific region and convert them into time-series data, developing an automatic satellite image collection system for this purpose. By utilizing this system, users can collect and extract data for their specific regions of interest, making the data immediately usable. Experimental results have shown the feasibility of automatically acquiring freely available Landsat and Sentinel images from the web and incorporating manually inputted high-resolution satellite images. Comparisons between automatically collected and edited images based on high-resolution satellite data demonstrated minimal discrepancies, with no significant errors in the generated output.
Manik DAS ADHIKARI;Seung-Bin LEE;Seong-Wuk KIM;Hyeon-Jun KIM;Jeremie TUGANISHURI;Sang-Guk YUM;Ji-Myong KIM
International conference on construction engineering and project management
/
2024.07a
/
pp.102-111
/
2024
Roadbed stability is paramount in urban areas as it directly affects public safety and city operations. South Korea's major metropolis has experienced 1127 cases of ground subsidence since 2014, affecting subways, roads, railways, and construction sites. Notably, about 40% of these incidents coincide with heavy summer rainfall, while 60% resulted from utility damage, improper backfill, and groundwater fluctuations. Subsequently, roadbed instability leads to a range of cascading hazards, including sinkholes and road failures, endangering public safety and the economy. Therefore, continuous monitoring of roadbed stability and implementing proactive measures are essential for a resilient transportation infrastructure. However, terrestrial in-situ observations like GPS provide accurate surface's displacement with high temporal accuracy but limited spatial resolution. To address this issue, we used the InSAR permanent scatterer (PSInSAR) technique to process 35 Sentinel-1 SLC datasets acquired between 2017 and 2022 to monitor and prevent cascading hazards in Daejeon City, South Korea. The results revealed an average subsidence rate of -0.88mm/year with a maximum of -7.73 mm/year. Notably, the southern part of the city exhibited significant roadbed instability, with an average and maximum cumulative subsidence of -5.13 mm and -44.95 mm, respectively. The deformation data was then integrated with road geometry to develop a vulnerability map of the city, highlighting the pronounced roadbed deformation in the southern region. Time-series subsidence variations correlated with groundwater fluctuations data from 2017 to 2022, showing a decline in groundwater levels from 4.63m to 9.9m in the southern region. Furthermore, a comparison between subsidence rates and effective shear wave velocity (Vs30) revealed that most subsidence events were associated with Vs30 values below 420 m/sec, indicating a clear lithological influence on the spatial distribution of roadbed instability. Thus, the integrated geotechnical and hydrogeological data with PSInSAR monitoring can better understand the processes responsible for roadbed instability in areas with small-scale variations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.