• Title/Summary/Keyword: sentinel

Search Result 420, Processing Time 0.026 seconds

A Retrospective Multicenter Evaluation of Cutaneous Melanomas in Turkey

  • Gamsizkan, Mehmet;Yilmaz, Ismail;Buyukbabani, Nesimi;Demirkesen, Cuyan;Demiriz, Murat;Cetin, Emel Dikicioglu;Ince, Umit;Akalin, Taner;Demirkan, Nese Calli;Lebe, Banu;Erdem, Ozlem;Gokoz, Ozay;Sakiz, Damlanur;Demireli, Peyker Temiz;Astarci, Hesna Muzeyyen;Adim, Saduman Balaban;Zemheri, Itir Ebru;Acikalin, Arbil;Yaman, Banu;Aydin, Ovgu;Bassorgun, Cumhur Ibrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10451-10456
    • /
    • 2015
  • Background: We defined melanoma distribution in a large series of Turkish patients and evaluated the prognostic parameters of melanomas. Materials and Methods: A total of 1574 patients' data was retrospectively collected at 18 centers in Turkey. Demographic characteristics were questioned and noted. Prognostic parametres were evaluated based on sentinel lymph node involvement. Results: Mean age was 56.7 (4-99) years. While 844 (53.6%) cases were male, 730 (46.4%) cases were female. One thousand four hundred forty-seven (92%) cases were invasive melanoma and 127 (8%) cases were in-situ melanoma. The most common histopathological form was the superficial spreading melanoma (SSM) which was found in 549 patients (37.9%). It was followed by nodular melanoma in 379 (26.2%), acral lentiginous melanoma (ALM) in 191 (13.2%) and lentigo maligna melanoma in 132 (9.1%), respectively. On univariate analysis, lymphovascular invasion (p<0.001), tumor thickness (p<0.001), histopathological subtype (p<0.001), Clark level (p=0.001), ulceration (p<0.001), ${\geq}6/mm^2$ mitosis (p=0.005), satellite formation (p=0.001) and gender (p=0.03) were found to be associated with sentinel lymph node positivity. Regression was associated with sentinel lymph node negativity (p=0.017). According to multivariate analysis, lymphovascular invasion and tumor thickness were significant independent predictive factors of SLN positivity. Patient age, tumor localization, precursor lesions, lymphocytic infiltration and neurotropism were not related with sentinel lymph node involvement. Conclusions: In this retrospective analysis, it was found that the prevalence of SSM is at a lower rate while the prevalence of ALM is at a higher rate when compared to western countries. According to Breslow index; most of the melanoma lesions' thickness were greater than 2 mm, corresponding Clark IV. Vascular invasion and tumor thickness are the most important factors for sentinel lymph node involvement.

A Study on Classifying Sea Ice of the Summer Arctic Ocean Using Sentinel-1 A/B SAR Data and Deep Learning Models (Sentinel-1 A/B 위성 SAR 자료와 딥러닝 모델을 이용한 여름철 북극해 해빙 분류 연구)

  • Jeon, Hyungyun;Kim, Junwoo;Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.999-1009
    • /
    • 2019
  • The importance of high-resolution sea ice maps of the Arctic Ocean is increasing due to the possibility of pioneering North Pole Routes and the necessity of precise climate prediction models. In this study,sea ice classification algorithms for two deep learning models were examined using Sentinel-1 A/B SAR data to generate high-resolution sea ice classification maps. Based on current ice charts, three classes (Open Water, First Year Ice, Multi Year Ice) of training data sets were generated by Arctic sea ice and remote sensing experts. Ten sea ice classification algorithms were generated by combing two deep learning models (i.e. Simple CNN and Resnet50) and five cases of input bands including incident angles and thermal noise corrected HV bands. For the ten algorithms, analyses were performed by comparing classification results with ground truth points. A confusion matrix and Cohen's kappa coefficient were produced for the case that showed best result. Furthermore, the classification result with the Maximum Likelihood Classifier that has been traditionally employed to classify sea ice. In conclusion, the Convolutional Neural Network case, which has two convolution layers and two max pooling layers, with HV and incident angle input bands shows classification accuracy of 96.66%, and Cohen's kappa coefficient of 0.9499. All deep learning cases shows better classification accuracy than the classification result of the Maximum Likelihood Classifier.

The Development of Major Tree Species Classification Model using Different Satellite Images and Machine Learning in Gwangneung Area (이종센서 위성영상과 머신 러닝을 활용한 광릉지역 주요 수종 분류 모델 개발)

  • Lim, Joongbin;Kim, Kyoung-Min;Kim, Myung-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1037-1052
    • /
    • 2019
  • We had developed in preceding study a classification model for the Korean pine and Larch with an accuracy of 98 percent using Hyperion and Sentinel-2 satellite images, texture information, and geometric information as the first step for tree species mapping in the inaccessible North Korea. Considering a share of major tree species in North Korea, the classification model needs to be expanded as it has a large share of Oak(29.5%), Pine (12.7%), Fir (8.2%), and as well as Larch (17.5%) and Korean pine (5.8%). In order to classify 5 major tree species, national forest type map of South Korea was used to build 11,039 training and 2,330 validation data. Sentinel-2 data was used to derive spectral information, and PlanetScope data was used to generate texture information. Geometric information was built from SRTM DEM data. As a machine learning algorithm, Random forest was used. As a result, the overall accuracy of classification was 80% with 0.80 kappa statistics. Based on the training data and the classification model constructed through this study, we will extend the application to Mt. Baekdu and North and South Goseong areas to confirm the applicability of tree species classification on the Korean Peninsula.

A Study on Photovoltaic Panel Monitoring Using Sentinel-1 InSAR Coherence (Sentinel-1 InSAR Coherence를 이용한 태양광전지 패널 모니터링 효율화 연구)

  • Yoon, Donghyeon;Lee, Moungjin;Lee, Seungkuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.233-243
    • /
    • 2021
  • Photovoltaic panels are hazardous electronic waste that has heavy metal as one of the hazardous components. Each year, hazardous electronic waste is increasing worldwide and every heavy rainfall exposes the photovoltaic panel to become the source of heavy metal soil contamination. the development needs a monitoring technology for this hazardous exposure. this research use relationships between SAR temporal baseline and coherence of Sentinel-1 satellite to detected photovoltaic panel. Also, the photovoltaic plant detection tested using the difference between that photovoltaic panel and the other difference surface of coherence. The author tested the photovoltaic panel and its environment to calculate differences in coherence relationships. As a result of the experiment, the coherence of the photovoltaic panel, which is assumed to be a permanent scatterer, shows a bias that is biased toward a median value of 0.53 with a distribution of 0.50 to 0.65. Therefore, further research is needed to improve errors that may occur during processing. Additionally, the author found that the change detection using a temporal baseline is possible as the rate of reduction of coherence of photovoltaic panels differs from those of artificial objects such as buildings. This result could be an efficient way to continuously monitor regardless of weather conditions, which was a limitation of the existing optical satellite image-based photovoltaic panel detection research and to understand the spatial distribution in situations such as photovoltaic panel loss.

Evaluation of Recent Magma Activity of Sierra Negra Volcano, Galapagos Using SAR Remote Sensing (SAR 원격탐사를 활용한 Galapagos Sierra Negra 화산의 최근 마그마 활동 추정)

  • Song, Juyoung;Kim, Dukjin;Chung, Jungkyo;Kim, Youngcheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1555-1565
    • /
    • 2018
  • Detection of subtle ground deformation of volcanoes plays an important role in evaluating the risk and possibility of volcanic eruptions. Ground-fixed observation equipment is difficult to maintain and cost-inefficient. In contrast, satellite remote sensing can regularly monitor at low cost. In this paper, following the study of Chadwick et al. (2006), which applied the interferometric SAR (InSAR) technique to the Sierra Negra volcano, Galapagos. In order to investigate the deformation of the volcano before 2005 eruption, the recent activities of this volcano were analyzed using Sentinel-1, the latest SAR satellite. We obtained the descending mode Sentinel-1A SAR data from January 2017 to January 2018, applied the Persistent Scatter InSAR, and estimated the depth and expansion quantity of magma in recent years through the Mogi model. As a result, it was confirmed that the activity pattern of volcano prior to the eruption in June 2018 was similar to the pattern before the eruption in 2005 and was successful in estimating the depth and expansion amount. The results of this study suggest that satellite SAR can characterize the activity patterns of volcano and can be possibly used for early monitoring of volcanic eruption.

Comparison of Co-registration Algorithms for TOPS SAR Image (TOPS 모드 SAR 자료의 정합기법 비교분석)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1143-1153
    • /
    • 2018
  • For TOPS InSAR processing, high-precision image co-registration is required. We propose an image co-registration method suitable for the TOPS mode by comparing the performance of cross correlation method, the geometric co-registration and the enhanced spectral diversity (ESD) matching algorithm based on the spectral diversity (SD) on the Sentinel-1 TOPS mode image. Using 23 pairs of interferometric pairs generated from 25 Sentinel-1 TOPS images, we applied the cross correlation (CC), geometric correction with only orbit information (GC1), geometric correction combined with iterative cross-correlation (GC2, GC3, GC4), and ESD iteration (ESD_GC, ESD_1, ESD_2). The mean of co-registration errors in azimuth direction by cross correlation and geometric matching are 0.0041 pixels and 0.0016 pixels, respectively. Although the ESD method shows the most accurate result with the error of less than 0.0005 pixels, the error of geometric co-registration is reduced to 0.001 pixels by repetition through additional cross correlation matching between the reference and resampled slave image. The ESD method is not applicable when the coherence of the burst overlap areas is low. Therefore, the geometric co-registration method through iterative processing is a suitable alternative for time series analysis using multiple SAR data or generating interferogram with long time intervals.

Improved Ship and Wake Detection Using Sentinel-2A Satellite Data (Sentinel-2A 위성자료를 활용한 선박 및 후류 탐지 개선)

  • Jeon, Uujin;Seo, Minji;Seong, Noh-hun;Choi, Sungwon;Sim, Suyoung;Byeon, Yugyeong;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.559-566
    • /
    • 2021
  • It is necessary to quickly detect and respond to ship accidents that occur continuously due to the influence of the recently increased maritime traffic. For this purpose, ship detection research is being actively conducted based on satellite images that can be monitored in real time over a wide area. However, there is a possibility that the wake may be falsely detected as a ship because the wake removal is not performed in previous studies that performed ship detection using spectral characteristics. Therefore, in this study, ship detection was performed using SDI (Ship Detection Index) based on the Sentinel-2A satellite image, and the wake was removed by utilizing the difference in the spectral characteristics of the ship and the wake. Probability of detection (POD) and false alarm rate (FAR) indices were used to verify the accuracy of the ship detection algorithm in this study. As a result of the verification, POD was similar and FAR was improved by 6.4% compared to the result of applying only SDI.

Evaluation of Reservoir Monitoring-based Hydrological Drought Index Using Sentinel-1 SAR Waterbody Detection Technique (Sentinel-1 SAR 영상의 수체 탐지 기법을 활용한 저수지 관측 기반 수문학적 가뭄 지수 평가)

  • Kim, Wanyub;Jeong, Jaehwan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.153-166
    • /
    • 2022
  • Waterstorage is one of the factorsthat most directly represent the amount of available water resources. Since the effects of drought can be more intuitively expressed, it is also used in variousstudies for drought evaluation. In a recent study, hydrological drought was evaluated through information on observing reservoirs with optical images. The short observation cycle and diversity of optical satellites provide a lot of data. However, there are some limitations because it is vulnerable to the influence of weather or the atmospheric environment. Therefore, thisstudy attempted to conduct a study on estimating the drought index using Synthetic Aperture Radar (SAR) image with relatively little influence from the observation environment. We produced the waterbody of Baekgok and Chopyeong reservoirs using SAR images of Sentinel-1 satellites and calculated the Reservoir Area Drought Index (RADI), a hydrological drought index. In order to validate the applicability of RADI to drought monitoring, it was compared with Reservoir Storage Drought Index (RSDI) based on measured storage. The two indices showed a very high correlation with the correlation coefficient, r=0.87, Area Under curve, AUC=0.97. These results show the possibility of regional-scale hydrological drought monitoring of SAR-based RADI. As the number of available SAR images increases in the future, it is expected that the utilization of drought monitoring will also increase.

Deep Learning-based Forest Fire Classification Evaluation for Application of CAS500-4 (농림위성 활용을 위한 산불 피해지 분류 딥러닝 알고리즘 평가)

  • Cha, Sungeun;Won, Myoungsoo;Jang, Keunchang;Kim, Kyoungmin;Kim, Wonkook;Baek, Seungil;Lim, Joongbin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1273-1283
    • /
    • 2022
  • Recently, forest fires have frequently occurred due to climate change, leading to human and property damage every year. The forest fire monitoring technique using remote sensing can obtain quick and large-scale information of fire-damaged areas. In this study, the Gangneung and Donghae forest fires that occurred in March 2022 were analyzed using the spectral band of Sentinel-2, the normalized difference vegetation index (NDVI), and the normalized difference water index (NDWI) to classify the affected areas of forest fires. The U-net based convolutional neural networks (CNNs) model was simulated for the fire-damaged areas. The accuracy of forest fire classification in Donghae and Gangneung classification was high at 97.3% (f1=0.486, IoU=0.946). The same model used in Donghae and Gangneung was applied to Uljin and Samcheok areas to get rid of the possibility of overfitting often happen in machine learning. As a result, the portion of overlap with the forest fire damage area reported by the National Institute of Forest Science (NIFoS) was 74.4%, confirming a high level of accuracy even considering the uncertainty of the model. This study suggests that it is possible to quantitatively evaluate the classification of forest fire-damaged area using a spectral band and indices similar to that of the Compact Advanced Satellite 500 (CAS500-4) in the Sentinel-2.

Atmospheric Correction of Sentinel-2 Images Using GK2A AOD: A Comparison between FLAASH, Sen2Cor, 6SV1.1, and 6SV2.1 (GK2A AOD를 이용한 Sentinel-2 영상의 대기보정: FLAASH, Sen2Cor, 6SV1.1, 6SV2.1의 비교평가)

  • Kim, Seoyeon;Youn, Youjeong;Jeong, Yemin;Park, Chan-Won;Na, Sang-Il;Ahn, Hoyong;Ryu, Jae-Hyun;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.647-660
    • /
    • 2022
  • To prepare an atmospheric correction model suitable for CAS500-4 (Compact Advanced Satellite 500-4), this letter examined an atmospheric correction experiment using Sentinel-2 images having similar spectral characteristics to CAS500-4. Studies to compare the atmospheric correction results depending on different Aerosol Optical Depth (AOD) data are rarely found. We conducted a comparison of Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), Sen2Cor, and Second Simulation of the Satellite Signal in the Solar Spectrum - Vector (6SV) version 1.1 and 2.1, using Geo-Kompsat 2A (GK2A) Advanced Meteorological Imager (AMI) and Aerosol Robotic Network (AERONET) AOD data. In this experiment, 6SV2.1 seemed more stable than others when considering the correlation matrices and the output images for each band and Normalized Difference Vegetation Index (NDVI).