• Title/Summary/Keyword: sentinel

Search Result 420, Processing Time 0.028 seconds

Lymphoscintigraphy for Intraopertive Sentinel Node Biopsy of Skin and Soft Tissue Malignancy (Lymphoscintigraphy와 전초 림프절 절제술을 이용한 피부 악성종양의 치험례)

  • Lee, Tae Hoon;Shim, Jeong Su;Jeong, Jae Ho
    • Archives of Plastic Surgery
    • /
    • v.32 no.5
    • /
    • pp.635-640
    • /
    • 2005
  • Sentinel lymphnode biopsy is widely performed in the management of malignant melanoma and breast cancer. The sentinel lymphnode is the prime site of draining from the malignant lesion and of metastasis. The aim of this study was to evaluate a usefulness of lymphoscintigraphy in conjunction with a removal of sentinel lymphnodes of skin and soft tissue malignancy. We studied 11 patients selected between January, 2003 and November, 2004. Clinically sentinel lymphnodes free of metastasis were examined with lymphoscintigraphy, gamma detection probe and vital dye staining, and we reviewed histopathologic findings and inert status of the nodes and the results fo treatment. Nine cases were malignant melanoma, one was squamous cell carcinoma on the left hand and another one leiomyosarcoma. Sentinel lymphnodes were identified in all cases. Three cases of malignant melanoma had positive sentinel lymphnodes on histological examination. All patients with positive sentinel lymphnodes were treated with therapeutic regional lymphadectomy, chemotherapy and adjuvant regimen. Four patients underwent PET scanning and followed sentinel lymphnode biopsy. Two had no metastasis signs on PET scanning. Therapeutic lymphnode dissection was carried out upon the patients whose sentinel lymphnode was positive on PET scanning. We contend that lymphoscintigraphy and sentinel lymphnode biopsy are reliable to confirm regional lymphnode metastasis of the skin and soft tissue malignancy, and blind extensive lymphnode dissection can be spared.

Soil moisture estimation of YongdamDam watershed using vegetation index from Sentinel-1 and -2 satellite images (Sentinel-1 및 Sentinel-2 위성영상기반 식생지수를 활용한 용담댐 유역의 토양수분 산정)

  • Son, Moobeen;Chung, Jeehun;Lee, Yonggwan;Woo, Soyoung;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.161-161
    • /
    • 2021
  • 본 연구에서는 금강 상류의 용담댐 유역(930.0 km2)을 대상으로 Sentinel-1 SAR(Synthetic Aperture Radar) 및 Sentinel-2 MultiSpectral Instrument(MSI) 위성영상을 활용한 토양수분 산출연구를 수행하였다. 연구에 사용된 자료는 10 m 해상도의 Sentinel-1 IW(Interferometric Wide swath) mode GRD(Ground Range Detected) product의 VV(Vertical transmit-Vertical receive) 및 VH(Vertical transmit-Horizontal receive) 편파자료와 Sentinel-2 Level-2A Bottom of Atmosphere(BOA) reflectance 자료를 2019년에 대해 각 6일 및 5일 간격으로 구축하였다. 위성영상의 Image processing은 SNAP(SentiNel Application Platform)을 활용하여 Sentinel-1 영상의 편파 별(VV, VH) 후방산란계수와 Sentinel-2의 적색(Band-4) 및 근적외(Band-8) 영상을 생성하였다. 토양수분 산출 모형은 다중선형회귀모형(Multiple Linear Regression Model)을 활용하였으며, 각 지점에 해당하는 토양 속성별로 모형을 생성하였다. 모형의 입력자료는 Sentinel-1 위성의 편파별 후방산란계수, Sentinel-1 위성에서 산출된 식생지수 RVI(Radar Vegetation Index)와 Sentinel-2 위성에서 산출된 NDVI(Normalized Difference Vegetation Index)를 활용하여 식생의 영향을 반영하고자 하였다. 모의 된 토양수분을 검증하기 위해 6개 지점의 TDR(Time Domain Reflectometry) 기반 실측 토양수분 자료를 수집하고, 상관계수(Correlation Coefficient, R), 평균제곱근오차(Root Mean Square Error, RMSE) 및 IOA(Index of Agreement)를 활용하여 전체 기간 및 계절별로 나누어 검증할 예정이다.

  • PDF

Clinicopathologic Features Predicting Involvement of Nonsentinel Axillary Lymph Nodes in Iranian Women with Breast Cancer

  • Moosavi, Seyed Alireza;Abdirad, Afshin;Omranipour, Ramesh;Hadji, Maryam;Razavi, Amirnader Emami;Najafi, Massoome
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7049-7054
    • /
    • 2014
  • Background: Almost half of the breast cancer patients with positive sentinel lymph nodes have no additional disease in the remaining axillary lymph nodes. This group of patients do not benefit from complete axillary lymph node dissection. This study was designed to assess the clinicopathologic factors that predict non-sentinel lymph node metastasis in Iranian breast cancer patients with positive sentinel lymph nodes. Materials and Methods: The records of patients who underwent sentinel lymph node biopsy, between 2003 and 2012, were reviewed. Patients with at least one positive sentinel lymph node who underwent completion axillary lymph node dissection were enrolled in the present study. Demographic and clinicopathologic characteristics including age, primary tumor size, histological and nuclear grade, lymphovascular invasion, perineural invasion, extracapsular invasion, and number of harvested lymph nodes, were evaluated. Results: The data of 167 patients were analyzed. A total of 92 (55.1%) had non-sentinel lymph node metastasis. Univariate analysis of data revealed that age, primary tumor size, histological grade, lymphovascular invasion, perineural invasion, extracapsular invasion, and the number of positive sentinel lymph nodes to the total number of harvested sentinel lymph nodes ratio, were associated with non-sentinel lymph node metastasis. After logistic regression analysis, age (OR=0.13; 95% CI, 0.02-0.8), primary tumor size (OR=7.7; 95% CI, 1.4-42.2), lymphovascular invasion (OR=19.4; 95% CI, 1.4-268.6), extracapsular invasion (OR=13.3; 95% CI, 2.3-76), and the number of positive sentinel lymph nodes to the total number of harvested sentinel lymph nodes ratio (OR=20.2; 95% CI, 3.4-121.9), were significantly associated with non-sentinel lymph node metastasis. Conclusions: According to this study, age, primary tumor size, lymphovascular invasion, extracapsular invasion, and the ratio of positive sentinel lymph nodes to the total number of harvested sentinel lymph nodes, were found to be independent predictors of non-sentinel lymph node metastasis.

Estimation of High Resolution Soil Moisture Based on Sentinel-1 SAR Sensor (Sentinel-1 SAR 센서 기반 고해상도 토양수분 산정)

  • KIm, Sangwoo;Lee, Taehwa;Shin, Yongchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.141-141
    • /
    • 2019
  • 토양수분은 수문 분석에 있어 매우 중요한 인자 중 하나이며 최근 기후변화로 인한 가뭄, 홍수 및 산불발생과 같은 물 관련 재해 발생에 직 간접적으로 영향을 미치기 때문에 지표 토양수분산정은 매우 중요하다. Sentinel-1 SAR(Synthetic Aperture Radar)는 능동형 위성으로 10m의 공간해상도로 제공되기 때문에 기존의 토양수분 전용위성인 SMOS(Soil Moisure and Ocean Salinity), SMAP(Soil Moisture Active Passive) 및 GCOM-W1(Global Change Observation Mission Water) 등 다르게 고해상도 토양수분 산정이 가능하다. 그러나 Sentinel-1 SAR 센서에서는 고해상도 지표 관측 이미지 자료만 제공하며, 토양수분 자료를 직접적으로 제공하지 않는다. 따라서 본 연구에서는 2018년도 Sentinel-1 A/B IW(Interferometric Wide swath) 모드의 VH(Vertical Transmit - Horizontal Receive) 편파 영상과 Sentinel-1 SAR 위성자료 전처리 도구인 SNAP(Sentinel Application Platform)을 이용하여 후방산란계수를 산정하였으며, 산정된 후 방산란계수와 농촌진흥청에서 제공하는 65개 지점의 실측 TDR(Time Domain Reflectrometry) 토양수분의 관계를 이용하여 회귀모형을 도출 및 토양수분 공간분포를 산정하였다. 비록 불확실성은 어느정도 발생 하였으나, 전체적으로 TDR 관측값과 $10m{\times}10m$ 해상도의 Sentinel-1 SAR 기반 토양수분이 일치하는 경향을 보였다. 본 연구 결과는 수문, 농업, 산림, 재해 등 다양한 분야에 활용될 수 있을 것으로 판단된다.

  • PDF

An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine (Google Earth Engine 제공 Sentinel-1과 Sentinel-2 영상을 이용한 지표 토양수분도 제작 실험)

  • Jihyun Lee ;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.599-608
    • /
    • 2023
  • The increasing interest in soil moisture data using satellite data for applications of hydrology, meteorology, and agriculture has led to the development of methods for generating soil moisture maps of variable resolution. This study demonstrated the capability of generating soil moisture maps using Sentinel-1 and Sentinel-2 data provided by Google Earth Engine (GEE). The soil moisture map was derived using synthetic aperture radar (SAR) image and optical image. SAR data provided by the Sentinel-1 analysis ready data in GEE was applied with normalized difference vegetation index (NDVI) based on Sentinel-2 and Environmental Systems Research Institute (ESRI)-based Land Cover map. This study produced a soil moisture map in the research area of Victoria, Australia and compared it with field measurements obtained from a previous study. As for the validation of the applied method's result accuracy, the comparative experimental results showed a meaningful range of consistency as 4-10%p between the values obtained using the algorithm applied in this study and the field-based ones, and they also showed very high consistency with satellite-based soil moisture data as 0.5-2%p. Therefore, public open data provided by GEE and the algorithm applied in this study can be used for high-resolution soil moisture mapping to represent regional land surface characteristics.

Extraction of small and medium-sized river waterbody from Sentinel-1 satellite image using river centerline data (하천중심선 자료를 활용한 Sentinel-1 위성영상의 중소규모 하천 수체 추출)

  • Kim, Soohyun;Kim, Dongkyun;Bang, Hyun Gyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.26-26
    • /
    • 2022
  • 본 연구는 하천중심선을 활용하여 Sentinel-1 위성영상기반 중소규모 하천 수체(水體) 추출 방법을 제안한다. 한강 유역의 한탄강 일부를 연구지역으로 선정하였으며, 이 지역을 촬영한 Sentinel-1 위성영상자료를 수집하였다. 여기에 개발한 방법의 검증을 위하여 유사시간대의 고해상도 광학위성 PlanetScope을 함께 수집하였다. 본 연구에서는 하천의 수체를 효과적으로 추출하기 위하여 국토지리정보원에서 제공하는 하천중심선 자료를 활용하였다. 하천중심선을 따라 유클리드 거리를 가중치로 산정한 자료(DST)와 Sentinel-1의 VH, VV 편광을 조합한 k-means 방법을 통해 위성영상의 픽셀을 군집화하였고, 최적의 매개변수 값을 산출하였다. 이 매개변수를 활용하여 Sentinel-1의 VV편광, VH편광 그리고 DST의 상관관계에 따른 타원방정식 형태의 계산식을 도출할 수 있었다. 수집한 자료의 검증결과 평균적으로 정확도는 0.65~0.75, kappa 계수는 0.8 내외를 보여 상당히 일치함을 확인할 수 있었다. 또한, 추가 확보한 30여 개의 Sentinel-1 위성영상을 제안 방법으로 추출한 수체의 면적과 유량 값을 비교해 본 결과, 유사한 변화 양상을 보였다. 본 연구는 하천 중심선자료를 활용하여 참값이 없더라도 수체 면적 추정이 가능함을 확인하였다. 제안한 방법은 현존하는 수체추출 방법보다 간단하고 신속하게 수체를 추출할 수 있을 것으로 보인다. 추후, 딥러닝을 통한 수체 식별을 추가 진행을 통해. 정확도를 높일 수 있을 것으로 기대한다.

  • PDF

Estimation of High-Resolution Soil Moisture based on Sentinel-1A/B SAR Sensors (Sentinel-1A/B SAR 센서 기반 고해상도 토양수분 산정)

  • Kim, Sangwoo;Lee, Taehwa;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.89-99
    • /
    • 2019
  • In this study, we estimated the spatially-distributed soil moisture at the high resolution ($10m{\times}10m$) using the satellite-based Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images. The Sentinel-1A/B raw data were pre-processed using the SNAP (Sentinel Application Platform) tool provided from ESA (European Space Agency), and then the pre-processed data were converted to the backscatter coefficients. The regression equations were derived based on the relationships between the TDR (Time Domain Reflectometry)-based soil moisture measurements and the converted backscatter coefficients. The TDR measurements from the 51 RDA (Rural Development Administration) monitoring sites were used to derive the regression equations. Then, the soil moisture values were estimated using the derived regression equations with the input data of Sentinel-1A/B based backscatter coefficients. Overall, the soil moisture estimates showed the linear trends compared to the TDR measurements with the high Pearson's correlations (more than 0.7). The Sentinel-1A/B based soil moisture values matched well with the TDR measurements with various land surface conditions (bare soil, crop, forest, and urban), especially for bare soil (R: 0.885~0.910 and RMSE: 3.162~4.609). However, the Mandae-ri (forest) and Taean-eup (urban) sites showed the negative correlations with the TDR measurements. These uncertainties might be due to limitations of soil surface penetration depths of SAR sensors and complicated land surface conditions (artificial constructions near the TDR site) at urban regions. These results may infer that qualities of Sentinel-1A/B based soil moisture products are dependent on land surface conditions. Although uncertainties exist, the Sentinel-1A/B based high-resolution soil moisture products could be useful in various areas (hydrology, agriculture, drought, flood, wild fire, etc.).

Simulation of Sentinel-2 Product Using Airborne Hyperspectral Image and Analysis of TOA and BOA Reflectance for Evaluation of Sen2cor Atmosphere Correction: Focused on Agricultural Land (Sen2Cor 대기보정 프로세서 평가를 위한 항공 초분광영상 기반 Sentinel-2 모의영상 생성 및 TOA와 BOA 반사율 자료와의 비교: 농업지역을 중심으로)

  • Cho, Kangjoon;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.251-263
    • /
    • 2019
  • Sentinel-2 Multi Spectral Instrument(MSI) launched by the European Space Agency (ESA) offered high spatial resolution optical products, enhanced temporal revisit of five days, and 13 spectral bands in the visible, near infrared and shortwave infrared wavelengths similar to Landsat mission. Landsat satellite imagery has been applied to various previous studies, but Sentinel-2 optical satellite imagery has not been widely used. Currently, for global coverage, Sentinel-2 products are systematically processed and distributed to Level-1C (L1C) products which contain the Top-of-Atmosphere (TOA) reflectance. Furthermore, ESA plans a systematic global production of Level-2A(L2A) product including the atmospheric corrected Bottom-of-Atmosphere (BOA) reflectance considered the aerosol optical thickness and the water vapor content. Therefore, the Sentinel-2 L2A products are expected to enhance the reliability of image quality for overall coverage in the Sentinel-2 mission with enhanced spatial,spectral, and temporal resolution. The purpose of this work is a quantitative comparison Sentinel-2 L2A products and fully simulated image to evaluate the applicability of the Sentinel-2 dataset in cultivated land growing various kinds of crops in Korea. Reference image of Sentinel-2 L2A data was simulated by airborne hyperspectral data acquired from AISA Fenix sensor. The simulation imagery was compared with the reflectance of L1C TOA and that of L2A BOA data. The result of quantitative comparison shows that, for the atmospherically corrected L2A reflectance, the decrease in RMSE and the increase in correlation coefficient were found at the visible band and vegetation indices to be significant.

Sentinel Lymph Node Imaging in Breast Cancer (유방암에서 전초림프절 영상)

  • Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.243-246
    • /
    • 1999
  • Currently, dissection of the axillary or regional lymph nodes is considered the standard staging procedure in breast cancer. However, accumulating evidence is becoming available that the sentinel node concept may provide the same or even better staging information. In the case of melanoma, it is proven that the histological characteristics of the sentinel node reflect the histological characteristics of the distal part of the lymphatic basin. Morbidity can be reduced significantly by the use of sentinel node dissection as several authors have reported successful introduction of this technique into clinical practice. But in breast cancer patients, there are signigicant differences in practice relating to the technology, such as radiopharmaceuticals, injection sites, volume of injectate, combination with vital blue dye, preoperative lymphoscintigraphy, etc. Valuable reports on these topics appeared in recent journals. This review is a summary of those reports for nuclear physicians interested in sentinel node detection by lymphoscintigraphy in breast cancer patients.

  • PDF

A Comparative Analysis of Vegetation and Agricultural Monitoring of Terra MODIS and Sentinel-2 NDVIs (Terra MODIS 및 Sentinel-2 NDVI의 식생 및 농업 모니터링 비교 연구)

  • Son, Moo-Been;Chung, Jee-Hun;Lee, Yong-Gwan;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.101-115
    • /
    • 2021
  • The purpose of this study is to evaluate the compatibility of the vegetation index between the two satellites and the applicability of agricultural monitoring by comparing and verifying NDVI (Normalized Difference Vegetation Index) based on Sentinel-2 and Terra MODIS (Moderate Resolution Imaging Spectroradiometer). Terra MODIS NDVI utilized 16-day MOD13Q1 data with 250 m spatial resolution, and Sentinel-2 NDVI utilized 10-day Level-2A BOA (Bottom Of Atmosphere) data with 10 m spatial resolution. To compare both NDVI, Sentinel-2 NDVIs were reproduced at 16-day intervals using the MVC (Maximum Value Composite) technique. As a result of time series NDVIs based on two satellites for 2019 and compare by land cover, the average R2 (Coefficient of determination) and RMSE (Root Mean Square Error) of the entire land cover were 0.86 and 0.11, which indicates that Sentinel-2 NDVI and MODIS NDVI had a high correlation. MODIS NDVI is overestimated than Sentinel-2 NDVI for all land cover due to coarse spatial resolution. The high-resolution Sentinel-2 NDVI was found to reflect the characteristics of each land cover better than the MODIS NDVI because it has a higher discrimination ability for subdivided land cover and land cover with a small area range.