• Title/Summary/Keyword: sentence translation

Search Result 106, Processing Time 0.028 seconds

Machine Translation of Korean-to-English spoken language Based on Semantic Patterns (의미패턴에 기반한 대화체 한영 기계 번역)

  • Jung, Cheon-Young;Seo, Young-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.9
    • /
    • pp.2361-2368
    • /
    • 1998
  • This paper analyzes Korean spoken language and describes the machine translation o[ Korean to-English spoken language based on semantic patterns, In Korean-to-English machine translation. ambiguity of Korean sentence analysis using syntactic information can be resolved by semantic patterns, Therefore, for machine translation of spoken language, we estabilish the system based on semantic patterns extracted from Korean scheduling domain, This system obtains the robustness by skip ability of syllables in analysis of Korean sentence and we add options to semantic patterns in order to reduce pattern numbers, The data used [or the experiment are scheduling domain and performance of Korean-to-English translation is 88%.

  • PDF

On Implementation of Korean-English Machine Translation System through Program Reuse (프로그램 재사용을 통한 한/영 기계번역시스템의 구현에 관한 연구)

  • Kim, Hion-Gun;Yang, Gi-Chul;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.559-570
    • /
    • 1993
  • In this article we present a rapid development of a Korean to English translation system, by the help of general English generator, PENMAN. PENMAN is an English sentence generation system, of which input language is a language specially devised for sentence generation, named Sentence Planning Language(SPL). The language SPL has various features that are necessary for generating sentences, covering both syntactic and semantic features. In this development we integrated a Korean language parser based on dependency grammar and the English sentence generator PENMAN, bridging two systems through a converting module, which converts dependency structures produced by Korean parser into SPL for PENMAN.

  • PDF

Syntactic Category Prediction for Improving Parsing Accuracy in English-Korean Machine Translation (영한 기계번역에서 구문 분석 정확성 향상을 위한 구문 범주 예측)

  • Kim Sung-Dong
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.345-352
    • /
    • 2006
  • The practical English-Korean machine translation system should be able to translate long sentences quickly and accurately. The intra-sentence segmentation method has been proposed and contributed to speeding up the syntactic analysis. This paper proposes the syntactic category prediction method using decision trees for getting accurate parsing results. In parsing with segmentation, the segment is separately parsed and combined to generate the sentence structure. The syntactic category prediction would facilitate to select more accurate analysis structures after the partial parsing. Thus, we could improve the parsing accuracy by the prediction. We construct features for predicting syntactic categories from the parsed corpus of Wall Street Journal and generate decision trees. In the experiments, we show the performance comparisons with the predictions by human-built rules, trigram probability and neural networks. Also, we present how much the category prediction would contribute to improving the translation quality.

Intra-Sentence Segmentation using Maximum Entropy Model for Efficient Parsing of English Sentences (효율적인 영어 구문 분석을 위한 최대 엔트로피 모델에 의한 문장 분할)

  • Kim Sung-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.5
    • /
    • pp.385-395
    • /
    • 2005
  • Long sentence analysis has been a critical problem in machine translation because of high complexity. The methods of intra-sentence segmentation have been proposed to reduce parsing complexity. This paper presents the intra-sentence segmentation method based on maximum entropy probability model to increase the coverage and accuracy of the segmentation. We construct the rules for choosing candidate segmentation positions by a teaming method using the lexical context of the words tagged as segmentation position. We also generate the model that gives probability value to each candidate segmentation positions. The lexical contexts are extracted from the corpus tagged with segmentation positions and are incorporated into the probability model. We construct training data using the sentences from Wall Street Journal and experiment the intra-sentence segmentation on the sentences from four different domains. The experiments show about $88\%$ accuracy and about $98\%$ coverage of the segmentation. Also, the proposed method results in parsing efficiency improvement by 4.8 times in speed and 3.6 times in space.

Discriminative Models for Automatic Acquisition of Translation Equivalences

  • Zhang, Chun-Xiang;Li, Sheng;Zhao, Tie-Jun
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.99-103
    • /
    • 2007
  • Translation equivalence is very important for bilingual lexicography, machine translation system and cross-lingual information retrieval. Extraction of equivalences from bilingual sentence pairs belongs to data mining problem. In this paper, discriminative learning methods are employed to filter translation equivalences. Discriminative features including translation literality, phrase alignment probability, and phrase length ratio are used to evaluate equivalences. 1000 equivalences randomly selected are filtered and then evaluated. Experimental results indicate that its precision is 87.8% and recall is 89.8% for support vector machine.

Multilingual Automatic Translation Based on UNL: A Case Study for the Vietnamese Language

  • Thuyen, Phan Thi Le;Hung, Vo Trung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.77-84
    • /
    • 2016
  • In the field of natural language processing, Universal Networking Language (UNL) has been used by various researchers as an inter-lingual approach to automatic machine translation. The UNL system consists of two main components, namely, EnConverter for converting text from a source language to UNL, and DeConverter for converting from UNL to a target language. Currently, many projects are researching how to apply UNL to different languages. In this paper, we introduce the tools that are UNL's applications and discuss how to reuse them to encode a Vietnamese sentence into UNL expressions and decode UNL expressions into a Vietnamese sentence. The testing was done with about 1,000 Vietnamese sentences (a dictionary that includes 4573 entries and 3161 rules). In addition, we compare the proportion of sentences translated based on a direct method (Google Translator) and another one based on UNL.

A Study of the Speaking-Centered Chinese Pronunciation Teaching Method for Basic Chinese Learners. (초급 중국어 학습자를 위한 발음교육 개선방안 - 말하기 중심 발음 교수법 -)

  • Lim, Seung Kyu
    • Cross-Cultural Studies
    • /
    • v.35
    • /
    • pp.339-368
    • /
    • 2014
  • In Teaching Chinese as a Foreign Language, phoneme-based pronunciation teaching such as tone, consonants, vowels is the most common teaching methods. Based on main character of Chinese grammar: 'lack of morphological change' in a narrow sense, was proposed by Lv Shuxiang and Zhu Dexi, I designed 'Communicative oriented Chinese pronunciation teaching method'. This teaching method is composed of seven elements: one kind is the 'structural elements': phoneme, word, phrase, sentence; another kind is the 'functional elements': listening, speaking and translation. This pronunciation teaching method has four kinds of practice methods: 1) phoneme learning method; 2) word based pronunciation practice; 3) phrase based pronunciation practice; 4) sentence based pronunciation practice. When the teachers use these practice methods, they can use the dialogue and Korean-Chinese translation. In particular, when the teachers use 'phoneme learning method', they must use Korean and Chinese phonetic comparison results. When the teachers try to correct learner's errors, they must first consider the speech communication.

Determination of an Optimal Sentence Segmentation Position using Statistical Information and Genetic Learning (통계 정보와 유전자 학습에 의한 최적의 문장 분할 위치 결정)

  • 김성동;김영택
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.10
    • /
    • pp.38-47
    • /
    • 1998
  • The syntactic analysis for the practical machine translation should be able to analyze a long sentence, but the long sentence analysis is a critical problem because of its high analysis complexity. In this paper a sentence segmentation method is proposed for an efficient analysis of a long sentence and the method of determining optimal sentence segmentation positions using statistical information and genetic learning is introduced. It consists of two modules: (1) decomposable position determination which uses lexical contextual constraints acquired from a training data tagged with segmentation positions. (2) segmentation position selection by the selection function of which the weights of parameters are determined through genetic learning, which selects safe segmentation positions with enhancing the analysis efficiency as much as possible. The safe segmentation by the proposed sentence segmentation method and the efficiency enhancement of the analysis are presented through experiments.

  • PDF

Hindi Correspondence of Bengali Nominal Suffixes

  • Chatterji, Sanjay
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.221-232
    • /
    • 2021
  • One bottleneck of Bengali to Hindi transfer based machine translation system is the translation of suffixes of noun. The appropriate translation of a nominal suffix often depends on the semantic role of the corresponding noun chunk in the sentence. With the availability of a high performance Bengali morphological analyzer and a basic Bengali parser it is possible to identify the role of each noun chunk. This information may be used for building rules for translating the ambiguous nominal suffixes. As there are some similarities between the uses of Bengali and Hindi nominal suffixes we find that the rules may be identified by linguistically analyzing corpus data. In this paper, we identify rules for the ambiguous four Bengali nominal suffixes from corpus data and evaluate their performances. This set of rules is able to resolve a majority of the nominal suffix ambiguities in Bengali to Hindi transfer based machine translation system. Using the rules, we are able to translate 98.17% Bengali nouns correctly which is much better than the baseline ILMT system's accuracy of 62.8%.

English-Korean Machine Translator "Trannie 96" (영한 기계번역기 트래니Trannie 96)

  • 성열원;박치원;정희선
    • Proceedings of the KSPS conference
    • /
    • 1996.10a
    • /
    • pp.432-434
    • /
    • 1996
  • The aim of this presentation is to show the structures and characteristics of English-Korean Machine Translator 'Trannie 96' 'Trannie 06' consists of five main engines and various types of dictionaries. With respect to the engines, the English sentences filtered by Pre-processor are tagged and parsed. After the conversion form English sentence structure to Korean one, 'Trannie 96' constructs Korean sentence. As for dictionaries, each engine has more than one optimized dictionaries. The algorithms employed by this machine is based on Linguistic theories, which make it possible for us to produce speedy and accurate translation.

  • PDF