• Title/Summary/Keyword: sentence embedding

Search Result 61, Processing Time 0.02 seconds

A Study on Named Entity Recognition for Effective Dialogue Information Prediction (효율적 대화 정보 예측을 위한 개체명 인식 연구)

  • Go, Myunghyun;Kim, Hakdong;Lim, Heonyeong;Lee, Yurim;Jee, Minkyu;Kim, Wonil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.58-66
    • /
    • 2019
  • Recognition of named entity such as proper nouns in conversation sentences is the most fundamental and important field of study for efficient conversational information prediction. The most important part of a task-oriented dialogue system is to recognize what attributes an object in a conversation has. The named entity recognition model carries out recognition of the named entity through the preprocessing, word embedding, and prediction steps for the dialogue sentence. This study aims at using user - defined dictionary in preprocessing stage and finding optimal parameters at word embedding stage for efficient dialogue information prediction. In order to test the designed object name recognition model, we selected the field of daily chemical products and constructed the named entity recognition model that can be applied in the task-oriented dialogue system in the related domain.

RNN Sentence Embedding and ELM Algorithm Based Domain and Dialogue Acts Classification for Customer Counseling in Finance Domain (RNN 문장 임베딩과 ELM 알고리즘을 이용한 금융 도메인 고객상담 대화 도메인 및 화행분류 방법)

  • Oh, Kyo-Joong;Park, Chanyong;Lee, DongKun;Lim, Chae-Gyun;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.220-224
    • /
    • 2017
  • 최근 은행, 보험회사 등 핀테크 관련 업체에서는 챗봇과 같은 인공지능 대화 시스템을 고객상담 업무에 도입하고 있다. 본 논문에서는 금융 도메인을 위한 고객상담 챗봇을 구현하기 위하여, 자연어 이해 기술 중 하나인 고객상담 대화의 도메인 및 화행분류 방법을 제시한다. 이 기술을 통해 자연어로 이루어지는 상담내용을 이해하고 적합한 응답을 해줄 수 있는 기술을 개발할 수 있다. TF-IDF, LDA, 문장 임베딩 등 대화 문장에 대한 자질을 추출하고, 추출된 자질을 Extreme learning machine(ELM)을 통해 도메인 및 화행 분류 모델을 학습한다.

  • PDF

RNN Sentence Embedding and ELM Algorithm Based Domain and Dialogue Acts Classification for Customer Counseling in Finance Domain (RNN 문장 임베딩과 ELM 알고리즘을 이용한 금융 도메인 고객상담 대화 도메인 및 화행분류 방법)

  • Oh, Kyo-Joong;Park, Chanyong;Lee, DongKun;Lim, Chae-Gyun;Choi, Ho-Jin
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.220-224
    • /
    • 2017
  • 최근 은행, 보험회사 등 핀테크 관련 업체에서는 챗봇과 같은 인공지능 대화 시스템을 고객상담 업무에 도입하고 있다. 본 논문에서는 금융 도메인을 위한 고객상담 챗봇을 구현하기 위하여, 자연어 이해 기술 중 하나인 고객상담 대화의 도메인 및 화행분류 방법을 제시한다. 이 기술을 통해 자연어로 이루어지는 상담내용을 이해하고 적합한 응답을 해줄 수 있는 기술을 개발할 수 있다. TF-IDF, LDA, 문장 임베딩 등 대화 문장에 대한 자질을 추출하고, 추출된 자질을 Extreme learning machine(ELM)을 통해 도메인 및 화행 분류 모델을 학습한다.

  • PDF

Profane or Not: Improving Korean Profane Detection using Deep Learning

  • Woo, Jiyoung;Park, Sung Hee;Kim, Huy Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.305-318
    • /
    • 2022
  • Abusive behaviors have become a common issue in many online social media platforms. Profanity is common form of abusive behavior in online. Social media platforms operate the filtering system using popular profanity words lists, but this method has drawbacks that it can be bypassed using an altered form and it can detect normal sentences as profanity. Especially in Korean language, the syllable is composed of graphemes and words are composed of multiple syllables, it can be decomposed into graphemes without impairing the transmission of meaning, and the form of a profane word can be seen as a different meaning in a sentence. This work focuses on the problem of filtering system mis-detecting normal phrases with profane phrases. For that, we proposed the deep learning-based framework including grapheme and syllable separation-based word embedding and appropriate CNN structure. The proposed model was evaluated on the chatting contents from the one of the famous online games in South Korea and generated 90.4% accuracy.

Multi Sentence Summarization Method using Similarity Clustering of Word Embedding (워드 임베딩의 유사도 클러스터링을 통한 다중 문장 요약 생성 기법)

  • Lee, Pil-Won;Song, Jin-su;Shin, Yong-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.290-292
    • /
    • 2021
  • 최근 인코더-디코더 구조의 자연어 처리모델이 활발하게 연구가 이루어지고 있다. 인코더-디코더기반의 언어모델은 특히 본문의 내용을 새로운 문장으로 요약하는 추상(Abstractive) 요약 분야에서 널리 사용된다. 그러나 기존의 언어모델은 단일 문서 및 문장을 전제로 설계되었기 때문에 기존의 언어모델에 다중 문장을 요약을 적용하기 어렵고 주제가 다양한 여러 문장을 요약하면 요약의 성능이 떨어지는 문제가 있다. 따라서 본 논문에서는 다중 문장으로 대표적이고 상품 리뷰를 워드 임베딩의 유사도를 기준으로 클러스터를 구성하여 관련성이 높은 문장 별로 인공 신경망 기반 언어모델을 통해 요약을 수행한다. 제안하는 모델의 성능을 평가하기 위해 전체 문장과 요약 문장의 유사도를 측정하여 요약문이 원문의 정보를 얼마나 포함하는지 실험한다. 실험 결과 기존의 RNN 기반의 요약 모델보다 뛰어난 성능의 요약을 수행했다.

Eojeol-based Embedding for Korean Erroneous Sentence Classification in Korean Chatbot (한국어 챗봇에서의 오류에 강건한 한국어 문장 분류를 위한 어절 단위 임베딩)

  • Choi, DongHyun;Park, IlNam;Shin, Myeongcheol;Kim, EungGyun;Shin, Dong Ryeol
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.43-48
    • /
    • 2019
  • 본 논문에서는 한국어 챗봇에서의 문장 분류 시스템에 대하여 서술한다. 텍스트를 입력으로 받는 한국어 챗봇의 경우, 때때로 입력 문장에 오타나 띄어쓰기 오류 등이 포함될 수 있고, 이러한 오류는 잘못된 형태소 분석 결과로 이어지게 된다. 잘못된 형태소 분석 결과로 인한 문장 분류의 오류를 줄이기 위하여, 본 논문에서는 새로운 통합 어절 임베딩 방식을 제안한다. 통합 어절 임베딩 방식의 단점을 보완하고 성능을 향상시키기 위하여, 두 가지의 말뭉치 노이즈 추가 방법이 별도로 제안되었다. 실험 결과에 따르면, 본 논문에서 제안된 시스템은 오류를 포함한 한국어 문장 분류 문제에서 기존 시스템과 비교하여 문장 단위 정확률 기준으로 23 %p의 성능 향상을 보였다.

  • PDF

Supervised Learning for Sentence Embedding Model using BERT (BERT를 이용한 지도학습 기반 문장 임베딩 모델)

  • Choi, Gihyeon;Kim, Sihyung;Kim, Harksoo;Kim, Kwanwoo;An, Jaeyoung;Choi, Doojin
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.225-228
    • /
    • 2019
  • 문장 임베딩은 문장의 의미를 잘 표현 할 수 있도록 해당 문장을 벡터화 하는 작업을 말한다. 문장 단위 입력을 사용하는 자연언어처리 작업에서 문장 임베딩은 매우 중요한 부분을 차지한다. 두 문장 사이의 의미관계를 추론하는 자연어 추론 작업을 통하여 학습한 문장 임베딩 모델이 기존의 비지도 학습 기반 문장 임베딩 모델 보다 높은 성능을 보이고 있다. 따라서 본 논문에서는 문장 임베딩 성능을 높이기 위하여 사전 학습된 BERT 모델을 이용한 문장 임베딩 기반 자연어 추론 모델을 제안한다. 문장 임베딩에 대한 성능 척도로 자연어 추론 성능을 사용하였으며 SNLI(Standford Natural Language Inference) 말뭉치를 사용하여 실험한 결과 제안 모델은 0.8603의 정확도를 보였다.

  • PDF

A Comparative Study on the Performance of Korean Sentence Embedding (Word2Vec, GloVe 및 RoBERTa 등의 모델을 활용한 한국어 문장 임베딩 성능 비교 연구)

  • Seok, Juree;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.444-449
    • /
    • 2021
  • 자연어처리에서 임베딩이란 사람의 언어를 컴퓨터가 이해할 수 있는 벡터로 변환한 것으로 자연어처리의 필수 요소 중 하나이다. 본 논문에서는 단어 기반 임베딩인 Word2Vec, GloVe, fastText와 문장 기반 임베딩 기법인 BERT와 M-USE, RoBERTa를 사용하여 한국어 문장 임베딩을 만들어 NSMC, KorNLI, KorSTS 세 가지 태스크에 대한 성능을 확인해보았다. 그 결과 태스크에 따라서 적합한 한국어 문장 임베딩 기법이 달라지며, 태스크에 따라서는 BERT의 평균 임베딩보다 GloVe의 평균 임베딩과 같은 단어 기반의 임베딩이 좋은 성능을 보일 수 있음을 확인할 수 있었다.

  • PDF

Nonlinear Vector Alignment Methodology for Mapping Domain-Specific Terminology into General Space (전문어의 범용 공간 매핑을 위한 비선형 벡터 정렬 방법론)

  • Kim, Junwoo;Yoon, Byungho;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.127-146
    • /
    • 2022
  • Recently, as word embedding has shown excellent performance in various tasks of deep learning-based natural language processing, researches on the advancement and application of word, sentence, and document embedding are being actively conducted. Among them, cross-language transfer, which enables semantic exchange between different languages, is growing simultaneously with the development of embedding models. Academia's interests in vector alignment are growing with the expectation that it can be applied to various embedding-based analysis. In particular, vector alignment is expected to be applied to mapping between specialized domains and generalized domains. In other words, it is expected that it will be possible to map the vocabulary of specialized fields such as R&D, medicine, and law into the space of the pre-trained language model learned with huge volume of general-purpose documents, or provide a clue for mapping vocabulary between mutually different specialized fields. However, since linear-based vector alignment which has been mainly studied in academia basically assumes statistical linearity, it tends to simplify the vector space. This essentially assumes that different types of vector spaces are geometrically similar, which yields a limitation that it causes inevitable distortion in the alignment process. To overcome this limitation, we propose a deep learning-based vector alignment methodology that effectively learns the nonlinearity of data. The proposed methodology consists of sequential learning of a skip-connected autoencoder and a regression model to align the specialized word embedding expressed in each space to the general embedding space. Finally, through the inference of the two trained models, the specialized vocabulary can be aligned in the general space. To verify the performance of the proposed methodology, an experiment was performed on a total of 77,578 documents in the field of 'health care' among national R&D tasks performed from 2011 to 2020. As a result, it was confirmed that the proposed methodology showed superior performance in terms of cosine similarity compared to the existing linear vector alignment.

Emotion Analysis Using a Bidirectional LSTM for Word Sense Disambiguation (양방향 LSTM을 적용한 단어의미 중의성 해소 감정분석)

  • Ki, Ho-Yeon;Shin, Kyung-shik
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.197-208
    • /
    • 2020
  • Lexical ambiguity means that a word can be interpreted as two or more meanings, such as homonym and polysemy, and there are many cases of word sense ambiguation in words expressing emotions. In terms of projecting human psychology, these words convey specific and rich contexts, resulting in lexical ambiguity. In this study, we propose an emotional classification model that disambiguate word sense using bidirectional LSTM. It is based on the assumption that if the information of the surrounding context is fully reflected, the problem of lexical ambiguity can be solved and the emotions that the sentence wants to express can be expressed as one. Bidirectional LSTM is an algorithm that is frequently used in the field of natural language processing research requiring contextual information and is also intended to be used in this study to learn context. GloVe embedding is used as the embedding layer of this research model, and the performance of this model was verified compared to the model applied with LSTM and RNN algorithms. Such a framework could contribute to various fields, including marketing, which could connect the emotions of SNS users to their desire for consumption.