• 제목/요약/키워드: sentence embedding

검색결과 61건 처리시간 0.021초

Sentence model based subword embeddings for a dialog system

  • Chung, Euisok;Kim, Hyun Woo;Song, Hwa Jeon
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.599-612
    • /
    • 2022
  • This study focuses on improving a word embedding model to enhance the performance of downstream tasks, such as those of dialog systems. To improve traditional word embedding models, such as skip-gram, it is critical to refine the word features and expand the context model. In this paper, we approach the word model from the perspective of subword embedding and attempt to extend the context model by integrating various sentence models. Our proposed sentence model is a subword-based skip-thought model that integrates self-attention and relative position encoding techniques. We also propose a clustering-based dialog model for downstream task verification and evaluate its relationship with the sentence-model-based subword embedding technique. The proposed subword embedding method produces better results than previous methods in evaluating word and sentence similarity. In addition, the downstream task verification, a clustering-based dialog system, demonstrates an improvement of up to 4.86% over the results of FastText in previous research.

Out-of-Vocabulary 단어에 강건한 병렬 Tri-LSTM 문장 임베딩을 이용한 감정분석 (Sentiment Analysis using Robust Parallel Tri-LSTM Sentence Embedding in Out-of-Vocabulary Word)

  • 이현영;강승식
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.16-24
    • /
    • 2021
  • word2vec 등 기존의 단어 임베딩 기법은 원시 말뭉치에 출현한 단어들만을 대상으로 각 단어를 다차원 실수 벡터 공간에 고정된 길이의 벡터로 표현하기 때문에 형태론적으로 풍부한 표현체계를 가진 언어에 대한 단어 임베딩 기법에서는 말뭉치에 출현하지 않은 단어들에 대한 단어 벡터를 표현할 때 OOV(out-of-vocabulary) 문제가 빈번하게 발생한다. 문장을 구성하는 단어 벡터들로부터 문장 벡터를 구성하는 문장 임베딩의 경우에도 OOV 단어가 포함되었을 때 문장 벡터를 정교하게 구성하지 못하는 문제점이 있다. 특히, 교착어인 한국어는 어휘형태소와 문법형태소가 결합되는 형태론적 특성 때문에 미등록어의 임베딩 기법은 성능 향상의 중요한 요인이다. 본 연구에서는 단어의 형태학적인 정보를 이용하는 방식을 문장 수준으로 확장하고 OOV 단어 문제에 강건한 병렬 Tri-LSTM 문장 임베딩을 제안한다. 한국어 감정 분석 말뭉치에 대해 성능 평가를 수행한 결과 한국어 문장 임베딩을 위한 임베딩 단위는 형태소 단위보다 문자 단위가 우수한 성능을 보였으며, 병렬 양방향 Tri-LSTM 문장 인코더는 86.17%의 감정 분석 정확도를 달성하였다.

Self-Attention을 적용한 문장 임베딩으로부터 이미지 생성 연구 (A Study on Image Generation from Sentence Embedding Applying Self-Attention)

  • 유경호;노주현;홍택은;김형주;김판구
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.63-69
    • /
    • 2021
  • 사람이 어떤 문장을 보고 그 문장에 대해 이해하는 것은 문장 안에서 주요한 단어를 이미지로 연상시켜 그 문장에 대해 이해한다. 이러한 연상과정을 컴퓨터가 할 수 있도록 하는 것을 text-to-image라고 한다. 기존 딥 러닝 기반 text-to-image 모델은 Convolutional Neural Network(CNN)-Long Short Term Memory(LSTM), bi-directional LSTM을 사용하여 텍스트의 특징을 추출하고, GAN에 입력으로 하여 이미지를 생성한다. 기존 text-to-image 모델은 텍스트 특징 추출에서 기본적인 임베딩을 사용하였으며, 여러 모듈을 사용하여 이미지를 생성하므로 학습 시간이 오래 걸린다. 따라서 본 연구에서는 자연어 처리분야에서 성능 향상을 보인 어텐션 메커니즘(Attention Mechanism)을 문장 임베딩에 사용하여 특징을 추출하고, 추출된 특징을 GAN에 입력하여 이미지를 생성하는 방법을 제안한다. 실험 결과 기존 연구에서 사용되는 모델보다 inception score가 높았으며 육안으로 판단하였을 때 입력된 문장에서 특징을 잘 표현하는 이미지를 생성하였다. 또한, 긴 문장이 입력되었을 때에도 문장을 잘 표현하는 이미지를 생성하였다.

ELMo 임베딩 기반 문장 중요도를 고려한 중심 문장 추출 방법 (Method of Extracting the Topic Sentence Considering Sentence Importance based on ELMo Embedding)

  • 김은희;임명진;신주현
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.39-46
    • /
    • 2021
  • 본 연구는 뉴스 기사에서 기사문을 구성하는 문장별 중요도를 고려하여 요약문을 추출하는 방법에 관한 것으로 문장 중요도에 영향을 주는 특성으로 중심 문장(Topic Sentence)일 확률, 기사 제목 및 다른 문장과의 유사도, 문장 위치에 따른 가중치를 추출하여 문장 중요도를 계산하는 방법을 제안한다. 이때, 중심 문장(Topic Sentence)은 일반 문장과는 구별되는 특징을 가질 것이라는 가설을 세우고, 딥러닝 기반 분류 모델을 학습시켜 입력 문장에 대한 중심 문장 확률값을 구한다. 또한 사전학습된 ELMo 언어 모델을 활용하여 문맥 정보를 반영한 문장 벡터값을 기준으로 문장간 유사도를 계산하여 문장 특성으로 추출한다. LSTM 및 BERT 모델의 중심 문장 분류성능은 정확도 93%, 재현율 96.22%, 정밀도 89.5%로 높은 분석 결과가 나왔으며, 이렇게 추출된 문장 특성을 결합하여 문장별 중요도를 계산한 결과, 기존 TextRank 알고리즘과 비교하여 중심 문장 추출 성능이 10% 정도 개선된 것을 확인할 수 있었다.

자연어처리 모델을 이용한 이커머스 데이터 기반 감성 분석 모델 구축 (E-commerce data based Sentiment Analysis Model Implementation using Natural Language Processing Model)

  • 최준영;임희석
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.33-39
    • /
    • 2020
  • 자연어 처리 분야에서 번역, 형태소 태깅, 질의응답, 감성 분석등 다양한 영역의 연구가 활발히 진행되고 있다. 감성 분석 분야는 Pretrained Model을 전이 학습하여 단일 도메인 영어 데이터셋에 대해 높은 분류 정확도를 보여주고 있다. 본 연구에서는 다양한 도메인 속성을 가지고 있는 이커머스 한글 상품평 데이터를 이용하고 단어 빈도 기반의 BOW(Bag Of Word), LSTM[1], Attention, CNN[2], ELMo[3], KoBERT[4] 모델을 구현하여 분류 성능을 비교하였다. 같은 단어를 동일하게 임베딩하는 모델에 비해 문맥에 따라 다르게 임베딩하는 전이학습 모델이 높은 정확도를 낸다는 것을 확인하였고, 17개 카테고리 별, 모델 성능 결과를 분석하여 실제 이커머스 산업에서 적용할 수 있는 감성 분석 모델 구성을 제안한다. 그리고 모델별 용량에 따른 추론 속도를 비교하여 실시간 서비스가 가능할 수 있는 모델 연구 방향을 제시한다.

Proper Noun Embedding Model for the Korean Dependency Parsing

  • Nam, Gyu-Hyeon;Lee, Hyun-Young;Kang, Seung-Shik
    • Journal of Multimedia Information System
    • /
    • 제9권2호
    • /
    • pp.93-102
    • /
    • 2022
  • Dependency parsing is a decision problem of the syntactic relation between words in a sentence. Recently, deep learning models are used for dependency parsing based on the word representations in a continuous vector space. However, it causes a mislabeled tagging problem for the proper nouns that rarely appear in the training corpus because it is difficult to express out-of-vocabulary (OOV) words in a continuous vector space. To solve the OOV problem in dependency parsing, we explored the proper noun embedding method according to the embedding unit. Before representing words in a continuous vector space, we replace the proper nouns with a special token and train them for the contextual features by using the multi-layer bidirectional LSTM. Two models of the syllable-based and morpheme-based unit are proposed for proper noun embedding and the performance of the dependency parsing is more improved in the ensemble model than each syllable and morpheme embedding model. The experimental results showed that our ensemble model improved 1.69%p in UAS and 2.17%p in LAS than the same arc-eager approach-based Malt parser.

문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안 (Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity)

  • 이민석;양석우;이홍주
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.105-122
    • /
    • 2019
  • 텍스트 데이터가 특정 범주에 속하는지 판별하는 문장 분류에서, 문장의 특징을 어떻게 표현하고 어떤 특징을 선택할 것인가는 분류기의 성능에 많은 영향을 미친다. 특징 선택의 목적은 차원을 축소하여도 데이터를 잘 설명할 수 있는 방안을 찾아내는 것이다. 다양한 방법이 제시되어 왔으며 Fisher Score나 정보 이득(Information Gain) 알고리즘 등을 통해 특징을 선택 하거나 문맥의 의미와 통사론적 정보를 가지는 Word2Vec 모델로 학습된 단어들을 벡터로 표현하여 차원을 축소하는 방안이 활발하게 연구되었다. 사전에 정의된 단어의 긍정 및 부정 점수에 따라 단어의 임베딩을 수정하는 방법 또한 시도하였다. 본 연구는 문장 분류 문제에 대해 선택적 단어 제거를 수행하고 임베딩을 적용하여 문장 분류 정확도를 향상시키는 방안을 제안한다. 텍스트 데이터에서 정보 이득 값이 낮은 단어들을 제거하고 단어 임베딩을 적용하는 방식과, 정보이득 값이 낮은 단어와 코사인 유사도가 높은 주변 단어를 추가로 선택하여 텍스트 데이터에서 제거하고 단어 임베딩을 재구성하는 방식이다. 본 연구에서 제안하는 방안을 수행함에 있어 데이터는 Amazon.com의 'Kindle' 제품에 대한 고객리뷰, IMDB의 영화리뷰, Yelp의 사용자 리뷰를 사용하였다. Amazon.com의 리뷰 데이터는 유용한 득표수가 5개 이상을 만족하고, 전체 득표 중 유용한 득표의 비율이 70% 이상인 리뷰에 대해 유용한 리뷰라고 판단하였다. Yelp의 경우는 유용한 득표수가 5개 이상인 리뷰 약 75만개 중 10만개를 무작위 추출하였다. 학습에 사용한 딥러닝 모델은 CNN, Attention-Based Bidirectional LSTM을 사용하였고, 단어 임베딩은 Word2Vec과 GloVe를 사용하였다. 단어 제거를 수행하지 않고 Word2Vec 및 GloVe 임베딩을 적용한 경우와 본 연구에서 제안하는 선택적으로 단어 제거를 수행하고 Word2Vec 임베딩을 적용한 경우를 비교하여 통계적 유의성을 검정하였다.

이종의 말뭉치를 활용한 자기 지도 문장 임베딩 학습 방법 (Self-supervised Learning Method using Heterogeneous Mass Corpus for Sentence Embedding Model)

  • 김성주;서수빈;박진성;박성현;전동현;김선훈;김경덕;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.32-36
    • /
    • 2020
  • 문장의 의미를 잘 임베딩하는 문장 인코더를 만들기 위해 비지도 학습과 지도 학습 기반의 여러 방법이 연구되고 있다. 지도 학습 방식은 충분한 양의 정답을 구축하는데 어려움이 있다는 한계가 있다. 반면 지금까지의 비지도 학습은 단일 형식의 말뭉치에 한정해서 입력된 현재 문장의 다음 문장을 생성 또는 예측하는 형식으로 문제를 정의하였다. 본 논문에서는 위키피디아, 뉴스, 지식 백과 등 문서 형태의 말뭉치에 더해 지식인이나 검색 클릭 로그와 같은 구성이 다양한 이종의 대량 말뭉치를 활용하는 자기 지도 학습 방법을 제안한다. 각 형태의 말뭉치에 적합한 자기 지도 학습 문제를 설계하고 학습한 경우 KorSTS 데이셋의 비지도 모델 성능 평가에서 기준 모델 대비 7점 가량의 성능 향상이 있었다.

  • PDF

딥러닝을 이용한 법률 분야 한국어 의미 유사판단에 관한 연구 (Deep Learning Based Semantic Similarity for Korean Legal Field)

  • 김성원;박광렬
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권2호
    • /
    • pp.93-100
    • /
    • 2022
  • 기존의 데이터 검색 방법으로는 키워드 중심의 검색 방법이 주로 사용되나, 이는 전문적인 용어가 많이 쓰이는 법률 분야의 검색 방법으로는 적합하지 않다. 이에 대해 본 논문에서는 법률 분야의 효과적인 데이터 검색 방안을 제안한다. 법률 도메인의 자연어처리 분야에서 문장 간의 유사성을 판단하는 데 최적화된 임베딩 방법에 관하여 서술한다. 법률문장을 TF-IDF를 이용하여 키워드 기반으로 임베딩하거나 Universal Sentence Encoder를 이용하여 의미 기반으로 임베딩을 한 후, BERT모델을 결합하여 법률 분야에서 문장 간 유사성을 검사하여 데이터를 검색하는 최적의 방안을 제안한다.

단어 쓰임새 정보와 신경망을 활용한 한국어 Hedge 인식 (Korean Hedge Detection Using Word Usage Information and Neural Networks)

  • 임미영;강신재
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권9호
    • /
    • pp.317-325
    • /
    • 2017
  • 본 논문에서는 한국어 문장을 대상으로 불확실한 사실이나 개인적인 추측으로 인해 중요하지 않다고 판단되는 문장, 즉 Hedge 문장들을 분류해 내고자 한다. 기존 영어권 연구에서는 Hedge 문장들을 분류할 때 단어의 의존관계 정보가 여러 형태로 활용되고 있으나, 한국어 연구에서는 사용되고 있지 않음을 확인하였다. 또 기존의 워드 임베딩(Word Embedding) 기법에서 단어의 쓰임새 정보가 학습된다는 점을 인지하였다. 단어의 쓰임새 정보가 어느 정도 의존관계를 표현할 수 있을 것으로 보고 워드 임베딩 정보를 Hedge 분류 실험에 적용하였다. 기존에 많이 사용되던 SVM과 CRF를 baseline 시스템으로 활용하였고 워드 임베딩과 신경망을 사용하여 비교실험을 하였다. 워드임베딩 데이터는 세종데이터와 온라인에서 수집된 데이터를 합하여 총 150여만 문장을 사용하였고 Hedge 분류 데이터는 수작업으로 구축한 12,517 문장의 뉴스데이터를 사용하였다. 워드 임베딩을 사용한 시스템이 SVM보다 7.2%p, CRF보다 1.6%p 좋은 성능을 내는 것을 확인하였다. 이는 단어의 쓰임새 정보가 한국어 Hedge 분류에서 긍정적인 영향을 미친다는 것을 의미한다.