• Title/Summary/Keyword: sent2vec

Search Result 4, Processing Time 0.018 seconds

Implementation of Korean Sentence Similarity using Sent2Vec Sentence Embedding (Sent2Vec 문장 임베딩을 통한 한국어 유사 문장 판별 구현)

  • Park, Sang-Kil;Shin, MyeongCheol
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.541-545
    • /
    • 2018
  • 본 논문에서는 Sent2Vec을 이용한 문장 임베딩으로 구현한 유사 문장 판별 시스템을 제안한다. 또한 한국어 특성에 맞게 모델을 개선하여 성능을 향상시키는 방법을 소개한다. 고성능 라이브러리 구현과 제품화 가능한 수준의 완성도 높은 구현을 보였으며, 자체 구축한 평가셋으로 한국어 특성을 반영한 모델에 대한 P@1 평가 결과 Word2Vec CBOW에 비해 9.25%, Sent2Vec에 비해 1.93% 더 높은 성능을 보였다.

  • PDF

Detection of Topic Changes in Child Speech Using Sent2Vec (Sent2Vec을 이용한 아동 발화의 화제 변경 탐지)

  • Heo, Tak-Sung;Lee, Yoon-Kyoung;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.343-346
    • /
    • 2019
  • 언어 병리학에서는 연령별 대화 능력 발달에 관한 연구에 관심이 많다. 하지만 이러한 연구는 많은 시간과 비용이 소모된다. 이를 해결하기 위해, 본 연구에서는 대화 능력 발달의 많은 연구 중 한 가지 방법인 화제 변경을 Sent2Vec을 이용하여 자동적으로 탐지해주는 방법을 제안한다. 아동의 연속된 두 발화를 비교하여 화제의 변경을 Sent2Vec의 코사인 유사도를 통해 찾아냈다. 본 연구에서는 언어 병리학에서의 연구 결과와 비교를 하기 위해 초등학생 1학년, 3학년, 5학년 집단의 데이터를 사용하였다. 본 연구에서 제안한 방법의 결과와 언어 병리학에서 연구한 결과의 상관관계가 99.95%로 매우 높음을 확인할 수 있었다. 이러한 화제 변경 탐지를 자동화함으로써, 언어 연구에 필요한 시간과 비용을 크게 절감할 수 있다.

  • PDF

A Word Semantic Similarity Measure Model using Korean Open Dictionary (우리말샘 사전을 이용한 단어 의미 유사도 측정 모델 개발)

  • Kim, Hoyong;Lee, Min-Ho;Seo, Dongmin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.3-4
    • /
    • 2018
  • 단어 의미 유사도 측정은 정보 검색이나 문서 분류와 같이 자연어 처리 분야 문제를 해결하는 데 큰 도움을 준다. 이러한 의미 유사도 측정 문제를 해결하기 위하여 단어의 계층 구조를 사용한 기존 연구들이 있지만 이는 단어의 의미를 고려하고 있지 않아 만족스럽지 못한 결과를 보여주고 있다. 본 논문에서는 국립국어원에서 간행한 표준국어대사전에 50만 어휘가 추가된 우리말샘 사전을 기반으로 하여 한국어 단어에 대한 계층 구조를 파악했다. 그리고 단어의 용례를 word2vec 모델에 학습하여 단어의 문맥적 의미를 파악하고, 단어의 정의문을 sent2vec 모델에 학습하여 단어의 사전적 의미를 파악했다. 또한, 구축된 계층 구조와 학습된 word2vec, sent2vec 모델을 이용하여 한국어 단어 의미 유사도를 측정하는 모델을 제안했다. 마지막으로 성능 평가를 통해 제안하는 모델이 기존 모델보다 향상된 성능을 보임을 입증했다.

  • PDF

A Deep Learning Model for Disaster Alerts Classification

  • Park, Soonwook;Jun, Hyeyoon;Kim, Yoonsoo;Lee, Soowon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.1-9
    • /
    • 2021
  • Disaster alerts are text messages sent by government to people in the area in the event of a disaster. Since the number of disaster alerts has increased, the number of people who block disaster alerts is increasing as many unnecessary disaster alerts are being received. To solve this problem, this study proposes a deep learning model that automatically classifies disaster alerts by disaster type, and allows only necessary disaster alerts to be received according to the recipient. The proposed model embeds disaster alerts via KoBERT and classifies them by disaster type with LSTM. As a result of classifying disaster alerts using 3 combinations of parts of speech: [Noun], [Noun + Adjective + Verb] and [All parts], and 4 classification models: Proposed model, Keyword classification, Word2Vec + 1D-CNN and KoBERT + FFNN, the proposed model achieved the highest performance with 0.988954 accuracy.