• Title/Summary/Keyword: sensors, structural damage

Search Result 200, Processing Time 0.03 seconds

Experimental deployment and validation of a distributed SHM system using wireless sensor networks

  • Castaneda, Nestor E.;Dyke, Shirley;Lu, Chenyang;Sun, Fei;Hackmann, Greg
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.787-809
    • /
    • 2009
  • Recent interest in the use of wireless sensor networks for structural health monitoring (SHM) is mainly due to their low implementation costs and potential to measure the responses of a structure at unprecedented spatial resolution. Approaches capable of detecting damage using distributed processing must be developed in parallel with this technology to significantly reduce the power consumption and communication bandwidth requirements of the sensor platforms. In this investigation, a damage detection system based on a distributed processing approach is proposed and experimentally validated using a wireless sensor network deployed on two laboratory structures. In this distributed approach, on-board processing capabilities of the wireless sensor are exploited to significantly reduce the communication load and power consumption. The Damage Location Assurance Criterion (DLAC) is used for localizing damage. Processing of the raw data is conducted at the sensor level, and a reduced data set is transmitted to the base station for decision-making. The results indicate that this distributed implementation can be used to successfully detect and localize regions of damage in a structure. To further support the experimental results obtained, the capabilities of the proposed system were tested through a series of numerical simulations with an expanded set of damage scenarios.

Optimization of Sensor Location for Real-Time Damage assessment of Cable in the cable-Stayed Bridge (사장교 케이블의 실시간 손상평가를 위한 센서 배치의 최적화)

  • Geon-Hyeok Bang;Gwang-Hee Heo;Jae-Hoon Lee;Yu-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.172-181
    • /
    • 2023
  • In this study, real-time damage evaluation of cable-stayed bridges was conducted for cable damage. ICP type acceleration sensors were used for real-time damage assessment of cable-stayed bridges, and Kinetic Energy Optimization Techniques (KEOT) were used to select the optimal conditions for the location and quantity of the sensors. When a structure vibrates by an external force, KEOT measures the value of the maximum deformation energy to determine the optimal measurement position and the quantity of sensors. The damage conditions in this study were limited to cable breakage, and cable damage was caused by dividing the cable-stayed bridge into four sections. Through FE structural analysis, a virtual model similar to the actual model was created in the real-time damage evaluation method of cable. After applying random oscillation waves to the generated virtual model and model structure, cable damage to the model structure was caused. The two data were compared by defining the response output from the virtual model as a corruption-free response and the response measured from the real model as a corruption-free data. The degree of damage was evaluated by applying the data of the damaged cable-stayed bridge to the Improved Mahalanobis Distance (IMD) theory from the data of the intact cable-stayed bridge. As a result of evaluating damage with IMD theory, it was identified as a useful damage evaluation technology that can properly find damage by section in real time and apply it to real-time monitoring.

Information entropy based algorithm of sensor placement optimization for structural damage detection

  • Ye, S.Q.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.443-458
    • /
    • 2012
  • The structural health monitoring (SHM) benchmark study on optimal sensor placement problem for the instrumented Canton Tower has been launched. It follows the success of the modal identification and model updating for the Canton Tower in the previous benchmark study, and focuses on the optimal placement of vibration sensors (accelerometers) in the interest of bettering the SHM system. In this paper, the sensor placement problem for the Canton Tower and the benchmark model for this study are first detailed. Then an information entropy based sensor placement method with the purpose of damage detection is proposed and applied to the benchmark problem. The procedure that will be implemented for structural damage detection using the data obtained from the optimal sensor placement strategy is introduced and the information on structural damage is specified. The information entropy based method is applied to measure the uncertainties throughout the damage detection process with the use of the obtained data. Accordingly, a multi-objective optimal problem in terms of sensor placement is formulated. The optimal solution is determined as the one that provides equally most informative data for all objectives, and thus the data obtained is most informative for structural damage detection. To validate the effectiveness of the optimally determined sensor placement, damage detection is performed on different damage scenarios of the benchmark model using the noise-free and noise-corrupted measured information, respectively. The results show that in comparison with the existing in-service sensor deployment on the structure, the optimally determined one is capable of further enhancing the capability of damage detection.

A Study on Frequency Characteristics of Impact Induced Damage Signals of Composite Laminates as the Incident Angle of an FBG sensor (복합재 충격손상신호의 FBG센서 입사각도에 따른 주파수분포 특성에 관한 연구)

  • Bang, Hyung-Jun;Song, Ji-Yong;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.235-239
    • /
    • 2005
  • In this research, we investigated the frequency characteristic of low-velocity impact induced damage signals on graphite/epoxy composite laminates using high-speed fiber Bragg grating(FBG) sensor system. Appling the FBG sensors to damage assessment, we need to study the response of FBG sensors as the damage signals of the different incident angles because FBG shows different directional sensitivity. In order to discriminate an impact induced damage signal from that of undamaged case, drop impacts with different energies were applied to the composite panel with different incident angle to the FBG sensor. Finally, detected impact signals were compared using frequency distributions of wavelet detail components in order to find distinctive signal characteristics of composites delamination.

  • PDF

Applications of Fiber Bragg Grating Sensor Technology (FBG 센서 기술의 응용 사례)

  • Kang Dong-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.3-9
    • /
    • 2006
  • Among many fabrication methods of composite materials, filament winding is the most effective method for fabricating axis-symmetric structures such as pressure tanks and pipes. Filament wound pressure tanks are under high internal pressure during the operation and it has the complexity in damage mechanisms and failure modes. Fiber optic sensors, especially FBG sensors can be easily embedded into the composite structures contrary to conventional electric strain gages (ESGs). In addition, many FBG sensors can be multiplexed in single optical fiber using wavelength division multiplexing (WDM) techniques. In this paper, we fabricated several filament wound pressure tanks with embedded FBG sensors and conducted some kinds of experiments such as an impact test, a bending test, and a thermal cycling test. From the experimental results, it was successfully demonstrated that FBG sensors are very appropriate to composite structures fabricated by filament winding process even though they are embedded into composites by multiplexing.

  • PDF

Condition assessment of reinforced concrete bridges using structural health monitoring techniques - A case study

  • Mehrani, E.;Ayoub, A.;Ayoub, A.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.381-395
    • /
    • 2009
  • The paper presents a case study in which the structural condition assessment of the East Bay bridge in Gibsonton, Florida is evaluated with the help of remote health monitoring techniques. The bridge is a four-span, continuous, deck-type reinforced concrete structure supported on prestressed pile bents, and is instrumented with smart Fiber Optic Sensors. The sensors used for remote health monitoring are the newly emerged Fabry-Perot (FP), and are both surface-mounted and embedded in the deck. The sensing system can be accessed remotely through fast Digital Subscriber Lines (DSL), which permits the evaluation of the bridge behavior under live traffic loads. The bridge was open to traffic since March 2005, and the collected structural data have been continuously analyzed since. The data revealed an increase in strain readings, which suggests a progression in damage. Recent visual observations also indicated the presence of longitudinal cracks along the bridge length. After the formation of these cracks, the sensors readings were analyzed and used to extrapolate the values of the maximum stresses at the crack location. The data obtained were also compared to initial design values of the bridge under factored gravity and live loads. The study showed that the proposed structural health monitoring technique proved to provide an efficient mean for condition assessment of bridge structures providing it is implemented and analyzed with care.

Damage progression study in fibre reinforced concrete using acoustic emission technique

  • Banjara, Nawal Kishor;Sasmal, Saptarshi;Srinivas, V.
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.173-184
    • /
    • 2019
  • The main objective of this study is to evaluate the true fracture energy and monitor the damage progression in steel fibre reinforced concrete (SFRC) specimens using acoustic emission (AE) features. Four point bending test is carried out using pre-notched plain and fibre reinforced (0.5% and 1% volume fraction) - concrete under monotonic loading. AE sensors are affixed at different locations of the specimens and AE parameters such as rise time, AE energy, hits, counts, amplitude and duration etc. are obtained. Using the captured and processed AE event data, fracture process zone is identified and the true fracture energy is evaluated. The AE data is also employed for tracing the damage progression in plain and fibre reinforced concrete, using both parametric- and signal- based techniques. Hilbert - Huang transform (HHT) is used in signal based processing for evaluating instantaneous frequency of the acoustic events. It is found that the appropriately processed and carefully analyzed acoustic data is capable of providing vital information on progression of damage on different types of concrete.

Optimal Sensor Allocation for Health Monitoring of Roller-Coaster Structure (롤러코스터의 모니터링을 위한 최적 센서 구성)

  • Heo, Gwang Hee;Jeon, Seung Gon;Park, In Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.165-174
    • /
    • 2011
  • This research aims at the optimal constitution of sensors required to identify the structural shortcoming of roller-coaster. In this research we analyzed the dynamic characteristics of roller-coaster by three dimensional FE modelling, decided on the appropriate location and number of sensors through optimal transducer theory, abstracted the mathematical value of modal features before and after damage on the basis of optimally placed and numbered sensors. and then presented it as a primary information about the basic structure which would be applied to damage estimation. As a target structure, the roller-coater at Seoul Children's Grand Park was chosen and built as a model reduced by one twentieth in size. In order to consider the Kinetics features particular to the roller-coaster structure, we made an exact three-dimensional FE modelling for the model structure by means of Spline function. As for the proper location and number of sensors, it was done by applying EIM and EOT. We also estimated the damage from the combination of strength, flexibility, and model corelation after abstracting the value of modal features. Finally the optimal transducer theory presented here in this research was proved to be valid, and the structural damage was well identified through changes in strength and flexibility. As a result, we were able to present the optimal constitution of sensors needed for the analysis of dynamic characteristics and the development of techniques in dynamic characteristics, which would ultimately contribute to the development of health monitoring for roller-coaster.

Perturbation analysis for robust damage detection with application to multifunctional aircraft structures

  • Hajrya, Rafik;Mechbal, Nazih
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.435-457
    • /
    • 2015
  • The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.

Development of Self-Diagnostic Smart Concrete (자가진단형 스마트 콘크리트 개발)

  • Kim Wha-Jung;Kim Ie-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.82-88
    • /
    • 2006
  • In People usually think that smart materials and smart structures have not been developed until recent years. But those kinds of sensors have already been used for sensing damage in a variety of materials and structures. Two typical examples are piezoelectric materials (e.g., PZT) and electric strain gauges. Load cell is an example that utilizes the piezoelectric property to measure the change in physical quantities occurred by applied loads, while strain gauges are used to measure the deformation of compressive and tension members. The feasibility of using smart materials is realized for a monitoring technology when those sensors are used to monitor damages at inside or outsider of the structures. In this study, a fundamental study on the development of self diagnostic smart concrete using PZT, and unsaturated polyester electric resistance sensor.

  • PDF