• 제목/요약/키워드: sensorless of PMSM

검색결과 143건 처리시간 0.116초

Analysis of Estimation Errors in Rotor Position for a Sensorless Control System Using a PMSM

  • Park, Yong-Soon;Sul, Seung-Ki;Ji, Jun-Keun;Park, Young-Jae
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.748-757
    • /
    • 2012
  • In a sensorless control system with a Permanent Magnet Synchronous Motor (PMSM), the angular position of the rotor flux can be estimated by a voltage equation. However, the estimated angle may be inaccurate due to various causes. In this paper, it was comprehensively analyzed how various causes affect the angle error. As a result of the analysis, an error equation intuitively describing these relationships was derived. The parameter errors of a PMSM and the non-ideal properties of the driving system were identified as error-causing factors. To demonstrate the validity of the error equation, PMSMs were tested at various operating points. The variations in angle errors could be well explained with the error equation.

역기전력 정규화에 의한 PMSM의 센서리스 제어 (PMSM sensorless control by back emf normalization)

  • 이정준;박성준;김철우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.300-303
    • /
    • 2002
  • With increase of servo motor In industrial and home application, a number of papers related to PMSM control have been researched. Among them, sensorless control schemes are especially concerned in the view point of its cost reduction. In the conventional approach, a rotor position is generally estimated by the integration of estimated rotor speed. In this method, because of their tight relationship between the amplitude of back-emf and rotor position. it is somewhat difficult to find two parameters at the same time. To solve this problem, a novel sensorless control scheme is proposed. It utilizes a back-emf normalization, so it does not requires the variables related with the amplitude of back-emf. The validity of the proposed control scheme was verified through experimental results.

  • PDF

토크제어를 적용한 PMSM의 센서리스 속도제어 (Speed Sensorless Control of PMSM Using Reactive Power Compensation)

  • 박수종;정한진;장민영;정태화;권영안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.251-253
    • /
    • 2006
  • Speed and torque controls of permanent magnet synchronous motors are usually attained by the application of position and speed sensors. However, speed and position sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been performed for the elimination of speed and position sensors. This paper investigates a novel sensorless control of a permanent magnet synchronous motor. The proposed control strategy utilizes the active and reactive torque control for maximizing the active torque of a sensorless PMSM. The proposed algorithm is verified through the simulation and experimentation.

  • PDF

중첩의 원리를 적용한 PC 베이스 영구자석 동기 전동기 센서리스제어 (A PC Based for PMSM Sensorless Control Using Superposition Theorem)

  • 이상훈;홍인표;박성준;김철우
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권6호
    • /
    • pp.292-297
    • /
    • 2002
  • This paper proposes a sensorless drive of a permanent magnet synchronous motor. In general EMF is used to calculate the current of Permanet Magnet Synchronous Motor(PMSM). However the current has a lag component by a time constant. So it is difficult to directly calculate a position angle. To estimate the position using the current without a lag component in this paper, the controller calculates the motor current by using a superposition principle in the equivalent circuit and then compensates lag component with a time constant of the motor. Therefore the estimated motor current without a lag compoent can be obtained and it is used to calculate the rotor position indirectly. In order to confirm the effectiveness of the proposed algorithm, experimental results are shown in detail.

직접 토크 제어를 사용한 영구자석 동기전동기의 센서리스 속도제어 (Speed Sensorless Control of PMSM Using Direct Torque Control)

  • 신성락;김상균;이동희;권영안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.978-980
    • /
    • 2000
  • Sensorless PMSM is much studied for the industrial applications and home appliances because, a mechanical sensor reduces reliability and increases cost. Two types of instantaneous torque controls are basically used for high performance variable-speed a.c. drive : vector control and direct torque control. This paper investigates speed sensorless control of PMSM using direct torque control. The switching of inverter is determined from SVPWM realizing the command voltage which is obtained by flux error and measured current without d-q transformation. The rotor speed is estimated through adaptive observer with feedback loop. The simulation and experimental results indicate good performances.

  • PDF

신경회로망을 이용한 PMSM의 센서리스 벡터제어 (Sensorless Vertor Control of PMSM using Neural Networks)

  • 이영실;이정철;이홍균;김종관;정택기;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.240-243
    • /
    • 2003
  • Sensorless Vector control of the permanent magnet synchronous motor(PMSM) typically requires knowledge of the PMSM structure and parameters, which in some situations are not readily available or may be difficult to obtain. In this paper, by measuring the currents of the PMSM drive, a neural-network-based rotor position and speed estimation method for PMSM is described. Because the proposed estimator treats the estimated motor speed as the weights, it is possible to estimate motor speed to adapt back propagation algorithm with 2 layered neural network. The proposed control algorithm is applied to PMSM drive system. The operating characteristics controlled by neural networks control are examined in detail.

  • PDF

소형 선박용 전기추진시스템을 위한 PMSM의 센서리스 제어 (Sensorless Control of a Permanent Magnet Synchronous Motor for Electric Propulsion System of Small Ships)

  • 정태영;와유쿤토위보오;정석권
    • 수산해양교육연구
    • /
    • 제29권3호
    • /
    • pp.778-784
    • /
    • 2017
  • This paper proposes a sensorless speed control of a permanent magnet synchronous motor (PMSM) based on an adaptive sliding mode observer (SMO) for electric propulsion system of small ships. An adaptive observer gain is proposed based on the Lyapunov's stability criterion to reduce the chattering problem at any speed operation instead of the constant gain observer. Furthermore, a cascade low-pass filter with variable cut-off frequency is suggested to strengthen the filtering capability of the observer. The experimental results from a 1.5 kW PMSM drive are provided to verify the effectiveness of the proposed adaptive SMO. The result shows that the proposed method gives good speed control performances even when the PMSM operates at 0.5% from its rated speed value.

Integrated Sliding-Mode Sensorless Driver with Pre-driver and Current Sensing Circuit for Accurate Speed Control of PMSM

  • Heo, Sewan;Oh, Jimin;Kim, Minki;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1154-1164
    • /
    • 2015
  • This paper proposes a fully sensorless driver for a permanent magnet synchronous motor (PMSM) integrated with a digital motor controller and an analog pre-driver, including sensing circuits and estimators. In the motor controller, a position estimator estimates the back electromotive force and rotor position using a sliding-mode observer. In the pre-driver, drivers for the power devices are designed with a level shifter and isolation technique. In addition, a current sensing circuit measures a three-phase current. All of these circuits are integrated in a single chip such that the driver achieves control of the speed with high accuracy. Using an IC fabricated using a $0.18{\mu}m$ BCDMOS process, the performance was verified experimentally. The driver showed stable operation in spite of the variation in speed and load, a similar efficiency near 1% compared to a commercial driver, a low speed error of about 0.1%, and therefore good performance for the PMSM drive.

적응 적분바이너리 관측기를 이용한 원통형 영구자석 동기전동기의 센서리스 속도제어 (A Sensorless Speed Control of Cylindric;31 Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer)

  • 최양광;김영석;한윤석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.152-163
    • /
    • 2004
  • This paper presents a sensorless speed control of cylindrical permanent magnet synchronous motors(PMSM) using an adaptive integral binary observer In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. With the help of integral characteristic, the rotor speed can be finely estimated and utilized for a sensorless speed controller for PMSM. Since the Parameters of the dynamic equations such as machine inertia or a viscosity friction coefficient are lot well known, there are many restrictions in the actual implementation. The proposed adaptive integral binary observer applies an adaptive scheme so that observer may overcome the problem caused by using the dynamic equations and the rotor speed is constructed by using the Lyapunov function. The observer structure and its design method are described. The experimental results of the proposed algorithm are presented to demonstrate the effectiveness of the approach.

전동기 친화형 출력필터를 이용한 영구자석 동기전동기의 센서리스 구동 성능 향상 (Performance Improvement of Sensorless PMSM Drives using Motor Friendly Output Filter)

  • 부한영;백승훈;한상훈;조영훈
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.329-332
    • /
    • 2020
  • A back-electromotive force (back-EMF) estimator for a permanent magnet synchronous motor (PMSM) uses the three-phase voltage references of a current controller to estimate rotor position. However, owing to voltage drops caused by the nonlinear characteristics of switches and passive components, the actual voltage in the motor and the three-phase voltage reference may not match. This study proposes a sensorless control method using a sine-wave output filter applied between the motor drive system and PMSM. The precise voltage in the motor can be measured with the sine-wave output filter and applied to the input of the estimator. Moreover, given that the voltage in the motor can be measured precisely at extremely low speeds, the stable operation range of the back-EMF estimator can be secured. Experimental results show that the proposed sensorless control method has stable operation at extremely low speeds compared with conventional sensorless control.