• Title/Summary/Keyword: sensorless of PMSM

Search Result 143, Processing Time 0.027 seconds

Estimation of Back EMF for the Sensorless Controlled High Speed PMSM (센서리스 제어 고속 동기전동기의 역기전력 추정)

  • Lee, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.114-115
    • /
    • 2013
  • This paper proposes an estimation method of back emf for the sensorless controlled high speed PMSM drive in turbo compressors with air bearings. The back emf of PMSM motor varies due to the temperature variation, which deteriorates the control performance of sensorless controlled PMSM drives. The proposed method is based on the current model of the PMSM motor. The simulation results show that the proposed method estimates the back emf of sensorless controlled PMSM drives with reasonable accuracy for parameter adaptation.

  • PDF

Improved Performance of Sensorless PMSM in Low Speed Range Using Variable Link Voltage (가변 링크전압에 의한 센서리스 PMSM의 저속운전 성능개선)

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.708-711
    • /
    • 2000
  • Sensorless PMSM is much studied for the industrial applications and home appliances because a mechanical sensor reduce reliability and increase cost. Most of sensorless algorithms are based on motor equations, and so the magnitude of phase voltage and current should be exactly obtained. However, the inverter output voltage applied to PMSM has relatively large error in the low speed range, and a relatively poor response is shown in the low speed range. This paper investigates the improved performance of sensorless PMSM in the low speed range. This paper proposes the error reduction of inverter output voltage which is realized through the variable link voltage. The proposed algorithm is verified through simulation and experiment.

  • PDF

Sensorless Control of a Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power in the Field-Weakening Region (약계자 영역에서의 순시무효전력을 이용한 PMSM의 센서리스 제어)

  • Lee Jeong-Hum;Kim Young-Seok;Choi Yang-Kwang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.71-80
    • /
    • 2005
  • This paper presents the position sensorless vector control of a cylindrical permanent magnet synchronous motor(PMSM) in the field weakening region. The position sensorless algorithm using an instantaneous reactive power of the PMSM is proposed. An instantaneous reactive power can be obtained from the vector product of rotor currents and back emf of the PMSM. Back emf includes the information of rotor speed. So the estimated speed can be yielded from the voltage equation of the PMSM. In other words, the estimated speed is compensated by using an instantaneous reactive power. To extend the speed range of the PMSM in the constant horsepower region, the field weakening control is applied. The proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of the proposed algorithm is verified by the experimental results.

PMSM Sensorless Operation for High Variable Speed Compressor (고속압축기 구동 PMSM을 위한 센서리스 운전)

  • 석줄기;이동춘;황준현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.676-681
    • /
    • 2002
  • This paper presents the implementation and experimental investigation of sensorless speed control for a variable-speed PMSM(Permanent Magnet Synchronous Motor) in super-high speed compressor operation. The proposed control scheme consists of two different sensorless algorithms to guarantee the reliable starting operation in low speed region and full torque characteristics using the vector control in high speed region. An automatic switching technique between two control modes is proposed to minimize the speed and torque pulsation during the switching instant of control mode. A testing system of 3.3㎾ PMSM has been built and 90% load test results at 7000r/min are presented to examine the feasibility of proposed sensorless control scheme.

Sensorless Control of a PMSM at Low Speeds using High Frequency Voltage Injection

  • Yoon Seok-Chae;Kim Jang-Mok
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • This paper describes the two control techniques to perform the sensorless vector control of a PMSM by injecting the high frequency voltage to the stator terminal. The first technique is the estimation algorithm of the initial rotor position. A PMSM possesses the saliency which produces the ellipse of the stator current when the high frequency voltage is injected into the motor terminal. The major axis angle of the current ellipse gives the rotor position information at a standstill. The second control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is calculated by appropriate signal processing to extract the position information from the stator current at low speeds or standstill. The proposed sensorless algorithm using the double-band hysteresis controller exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes. Speed, position estimation and vector control were carried out on the floating point processor TMS320VC33.

The study on the sensorless PMSM control using the superposition theory (중첩의 정리를 이용한 PMSM의 센서리스 제어)

  • Park, Hyun-Ju;Park, Sung-Jun;Kim, Jong-Dal;Shon, Mu-Heon;Kim, Gyu-Seob;Lee, Yil-Chun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.120-126
    • /
    • 2001
  • This paper presents a solution to control a PMSM(Permanent Magnet Synchronous Motor) without sensor. The control method is the presented superposition principle. This method of sensorless theory is very simple to compute estimated angle. The use of this system yields enhanced operations, fewer system components, lower system costs, efficient energy control system designs and increased efficiencies. A practical solution is described and its results are given in this study. The performance of a sensorless architecture allows an intelligent approach to reduce the complete system costs of digital motion control applications using the cheaper electrical sensorless motors. This paper deals with an overview of solutions in the sensorless PMSM control applications, whereby the focus will be the new sensorless controller and its applications.

  • PDF

Sensorless Speed Control of PMSM Considering Parameter Variation (파라메터 변동을 고려한 PMSM의 센서리스 속도제어)

  • Lee, D.H.;Shin, K.J.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.9-11
    • /
    • 1998
  • Most of sensorless algorithms are based on motor equations including electrical and mechanical parameters. However, parameter variation and uncertain error decrease the accuracy of speed estimation of PMSM. This paper investigates the sensorless speed control of PMSM considering parameter variation. The proposed algorithm use the speed compensator which is robust in parameter variation and error. The simulation and experimental results indicate good performances.

  • PDF

A Study on the Sensorless PMSM Control using the Superposition Theory

  • Lee, Young-Jin;Yoon, Young-Jin;Kim, Young-Ho;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.5-12
    • /
    • 2003
  • This study presents a solution to control a PMSM without sensors. The control method is the presented superposition principle. This method of sensorless theory is very simple to compute estimated angle. Therefore, computing time to estimate angle is shorter than other sensorless methods. The use of this system yields enhanced operations, fewer system components, lower system costs, efficient energy control system designs and increased efficiencies. A practical solution is described and its results are given in this study. The performance of a sensorless architecture allows an intelligent approach to reduce the complete system costs of digital motion control applications using the cheaper electrical sensorless motors. This paper deals with an overview of solutions in the sensorless PHSM control applications, whereby the focus will be the new sensorless controller and its applications.

Closed Type Initial Starting Algorithm for PMSM Sensorless Control Using Integrated Speed Angle (폐루프 방식의 속도 적분각을 이용한 PMSM 센서리스 초기기동 알고리즘)

  • Park, Seong-Myeong;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • The cold staring issue of permanent magnet synchronous motors (PMSM) is a chronic problem in the field of PMSM sensorless drives. A traditional starting method, called the I-F method, is widely adopted because of its simple structure. However, when using this method, the pre-defined magnitude and frequency of the starting current should be changed according to the condition of the load and machine inertia. In this paper, a smart and simple algorithm for the cold starting of PMSM is proposed. In the proposed method, an integrated control angle from the estimated electrical rotor speed is used for vector control such as the indirect vector control of the induction machine. Thus, very stable cold starting is performed regardless of the machine load condition or inertia changing.

PMSM Sensorless Speed Control Using a High Speed Sliding Mode Observer (고속 슬라이딩모드 관측기를 이용한 PMSM 센서리스 속도제어)

  • Son, Ju-Beom;Kim, Hong-Ryel;Seo, Young-Soo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.256-263
    • /
    • 2010
  • The paper proposes a sensorless speed control strategy for a PMSM (Permanent Magnet Synchronous Motor) based on a new SMO (Sliding Mode Observer), which substitutes a signum function with a sigmoid function. To apply robust sensorless control of PMSM against parameter fluctuations and disturbance, the high speed SMO is proposed, which estimates the rotor position and angular velocity from the back EMF. The low-pass filter and additional position compensation of the rotor are used to reduce the chattering problem commonly found in sliding mode observer with signum function, which becomes possible by applying the sigmoid function with the control of a switching function. Also the proposed sliding mode observer with the sigmoid function has better efficiency than the conventional sliding mode observer since it adjusts the observer gain by variable boundary layer and estimates the stator resistance. The stability of the proposed sliding mode observer is verified by the Lyapunov second method in determining the observer gain. The validity of the proposed high speed PMSM sensorless velocity control has been demonstrated by real experiments.