• 제목/요약/키워드: sensor-conditioning

검색결과 155건 처리시간 0.03초

A study on temperature dependent acoustic receiving characteristics of underwater acoustic sensors (수중음향센서 수온 변화에 따른 음향 수신 특성 변화 연구)

  • Je, Yub;Cho, Yohan;Kim, Kyungseop;Kim, Yong-Woon;Park, Saeyong;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • 제38권2호
    • /
    • pp.214-221
    • /
    • 2019
  • In this paper, a temperature dependent acoustic receiving characteristics of underwater acoustic sensor is studied by theoretical and experimental investigations. Two different types (low mid frequency sensor and high frequency sensor) of underwater acoustic sensors are designed with different configuration of baffle and conditioning plate. The temperature dependent characteristics of the acoustic sensors are investigated within the temperature range from $-2^{\circ}C$ to $35^{\circ}C$. The material properties of the piezoelectric ceramics, molding and baffle, which are the primary materials of the acoustic sensors, are measured with temperature change. The temperature dependent RVS (Receiving Voltage Sensitivity) characteristics of the acoustic sensors are simulated by using the measured material properties. The RVS changes of the acoustic sensors are measured by changing temperature in the watertank where the acoustic sensors are installed. The measured and the simulated data show that the temperature dependent characteristics of the acoustic sensors are mainly dependent for the sound speed changes of the molding material.

Implementation and Evaluation of the LUTS Diagnosis System Using FPGA (FPGA를 이용한 LUTS 진단 시스템 구현 및 평가)

  • Jeong, Do-Un;Chung, Wan-Young;Jeon, Gye-Rock
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제8권1호
    • /
    • pp.6-14
    • /
    • 2007
  • The purpose of urodynamic investigation is to determine information on the function of the urinary system. One of the most frequently used measurement procedures in urodynamics is filling and voiding cystometry using invasive method. But in this method transurethral catheter is use and it makes patients uncomfortable. The aim of this study was to implement the system that could evaluate the function of urinary tract with noninvasive and comfortable method. Therefor in this study, a sensor and measuring system were implemented to measure uroflow, urophonography and noninvasive bladder pressure signal during urination for diagnosing the LUTS(lower urinary tract symptoms) using noninvasive method. The implemented system compose of the sensor parts, signal conditioning parts, system control parts using FPGA and PC monitoring program. For the evaluation of the implemented system, the simulation of system's control part was performed and the model system for the lower urinary system was designed. From the evaluation of the model system, the mean error rate of the uroflow measurement part was 1.08% and coefficient of variation was 1,48. And the mean error rate of the noninvasive bladder pressure measurement part was 2.41% and coefficient of variation was 2.81. urophongraphy signal analysis was accomplished in a time domain and frequency domain. Average RMS power was used in a time domain analysis, and MF was used in a frequency domain analysis. From the evaluation of the model system average RMS power and MF was dependent on the occlusion degree significantly and median frequency range of $60{\sim}160Hz$ was correlated with the occlusion.

  • PDF

A Study on Smart Factory System Design for Screw Machining Management (나사 가공 관리를 위한 스마트팩토리 시스템 설계에 관한 연구)

  • Lee, Eun-Kyu;Kim, Dong-Wan;Lee, Sang-Wan;Kim, Jae-joong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.329-331
    • /
    • 2018
  • In this paper, we propose a monitoring system that starts with the supply of raw materials for threading, is processed into a lathe machine, and checks for defects of the product are automatically performed by the robot with Smart Factory technology through assembly and disassembly. Completion check according to the production instruction quantity and production instruction is made by checking the production status according to whether or not the raw material is worn by the displacement sensor, and checking the pitch and the contour of the processed female and male to determine OK and NG. The robotic system acts as a relay for loading and unloading of raw materials, pallet transfer, and overall process, and it acts as an intermediary for organically driving. The location information of the threaded products is collected by using the non-contact wireless tag and the energy saving system Production efficiency and utilization rate were checked. The environmental sensor collects the air-conditioning environment data (temperature, humidity), measures the temperature and humidity accurately, and checks the quality of product processing. It monitors and monitors the driving hazard level environment (overheating, humidity) of the product. Controls for CNC and robot module PLC as a heterogeneous system.

  • PDF

Computer-Interfacing Development for Propeller-Anemometer

  • Saad, Nor Hayati;Janin, Zuriati;Piah, Ruhaidawati Mohd Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.515-519
    • /
    • 2004
  • A Propeller-Anemometer is an instrument used specifically, to measure the wind speed. The accurate measurement of the wind speed is vitally important such required by any weather stations. In this research, the measurand of the instrumentation was the rotational speed of the propeller and the instrumentation result or output data was wind velocity. The speed measured was recorded digitally in the computer by using specific software. A specific sensor used to measure a variable by converting information of the variable (rotational speed of the propeller) into a dependent signal such as electrical signal in form of voltage. The development of Propeller-Anemometer involved few sets of instrumentation process and equipment. It included three major parts, mechanical, electronics and computer. The main instrumentation processes were physical and signal interfacing, signal conditioning, logic interfacing, data transmission to computer and processing the data. Generally, this paper presents the overall concept and design of Propeller-Anemometer Instrumentation. However, an emphasis was mainly in designing and building the interfacing system, hardware and software. Basically, for the first phase of the development, this project designed and built the RS232 terminal using Peripheral Interface Controller (PIC), PIC16F873. The hardware can be interfaced to computer or other compatible devices. This routine converted input voltage from the circuit to speed (velocity) and transmitted them afterwards to the target device by using the RS232 transmission protocol. This implementation implied a computer display as visual interface. For the purpose of this paper, RS232 data transmission was carried out using a Microsoft Visual Basic software routine.

  • PDF

Performance Improvement of Isolated High Voltage Full Bridge Converter Using Voltage Doubler

  • Lee, Hee-Jun;Shin, Soo-Cheol;Hong, Seok-Jin;Hyun, Seung-Wook;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2224-2236
    • /
    • 2014
  • The performance of an isolated high voltage full bridge converter is improved using a voltage doubler. In a conventional high voltage full bridge converter, the diode of the transformer secondary voltage undergoes a voltage spike due to the leakage inductance of the transformer and the resonance occurring with the parasitic capacitance of the diode. In addition, in the phase shift control, conduction loss largely increases from the freewheeling mode because of the circulating current. The efficiency of the converter is thus reduced. However, in the proposed converter, the high voltage dual converter consists of a voltage doubler because the circulating current of the converter is reduced to increase efficiency. On the other hand, in the proposed converter, an input current is distributed when using parallel input / serial output and the output voltage can be doubled. However, the voltages in the 2 serial DC links might be unbalanced due to line impedance, passive and active components impedance, and sensor error. Considering these problems, DC injection is performed due to the complementary operations of half bridge inverters as well as the disadvantage of the unbalance in the DC link. Therefore, the serial output of the converter needs to control the balance of the algorithm. In this paper, the performance of the conventional converter is improved and a balance control algorithm is proposed for the proposed converter. Also, the system of the 1.5[kW] PCS is verified through an experiment examining the operation and stability.

In-construction vibration monitoring of a super-tall structure using a long-range wireless sensing system

  • Ni, Y.Q.;Li, B.;Lam, K.H.;Zhu, D.P.;Wang, Y.;Lynch, J.P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • 제7권2호
    • /
    • pp.83-102
    • /
    • 2011
  • As a testbed for various structural health monitoring (SHM) technologies, a super-tall structure - the 610 m-tall Guangzhou Television and Sightseeing Tower (GTST) in southern China - is currently under construction. This study aims to explore state-of-the-art wireless sensing technologies for monitoring the ambient vibration of such a super-tall structure during construction. The very nature of wireless sensing frees the system from the need for extensive cabling and renders the system suitable for use on construction sites where conditions continuously change. On the other hand, unique technical hurdles exist when deploying wireless sensors in real-life structural monitoring applications. For example, the low-frequency and low-amplitude ambient vibration of the GTST poses significant challenges to sensor signal conditioning and digitization. Reliable wireless transmission over long distances is another technical challenge when utilized in such a super-tall structure. In this study, wireless sensing measurements are conducted at multiple heights of the GTST tower. Data transmission between a wireless sensing device installed at the upper levels of the tower and a base station located at the ground level (a distance that exceeds 443 m) is implemented. To verify the quality of the wireless measurements, the wireless data is compared with data collected by a conventional cable-based monitoring system. This preliminary study demonstrates that wireless sensing technologies have the capability of monitoring the low-amplitude and low-frequency ambient vibration of a super-tall and slender structure like the GTST.

The Study on the Monitoring of Temperature and Humidity in Public Utilization Facilities (다중 이용 시설에 대한 온.습도 모니터링에 관한 연구)

  • Choi, Man-Yong;Chae, Kyung-Hee;Kim, Ki-Bok;Kim, Su-Un
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1470-1475
    • /
    • 2009
  • Until now for the safety of structures and equipment monitoring technology to measure the amount of the physical, if that is the one, one-point or single-source target is one the most. Therefore, becoming more numerous and complex to measure the amount of physical measurement technology that is comprehensive and complex, multi-source concepts to the monitoring of a multi-sensing technology is required. Have the same characteristics of multi-source multi-use space such as a multi-structure of facilities/equipment is. The people's safety in a multi-use facility will be directly related to life and even a little carelessness can lead to large-scale disaster occurs because of several factors, risks and to manage detect in advance the development of an intelligent monitoring technology is essential. Therefore, this study shows that multiple structures/facilities to improve the quality of human life in research to maintain a safe and comfortable living space for multi-source intelligence to the development of monitoring technology to achieve that goal, and the ubiquitous sensor network system on the basis of the wireless transmission module, and multiple research facilities/equipment for the ultra-small sensors for health monitoring study was performed.

  • PDF

New Control Method for Power Decoupling of Electrolytic Capacitor-less Photovoltaic Micro-Inverter with Primary Side Regulation

  • Irfan, Mohammad Sameer;Shin, Jong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.677-687
    • /
    • 2018
  • This paper presents a novel power decoupling control scheme with the bidirectional buck-boost converter for primary-side regulation photovoltaic (PV) micro-inverter. With the proposed power decoupling control scheme, small-capacitance film capacitors are used to overcome the life-span and reliability limitations of the large-capacitance electrolytic capacitors. Then, an improved flyback PV inverter is employed in continuous conduction mode with primary-side regulation for the PV power conditioning. The proposed power-decoupling controller shares the reference for primary side current regulation of the flyback PV inverter. The decoupling controller shapes the input current of the bidirectional buck-boost converter. The shared reference eliminates the phase-delay between the input current to the bidirectional buck-boost converter and the double frequency current at the PV primary current. The elimination of the phase-delay in dynamic response enhances the ripple rejection capability of the power decoupling buck-boost converter even with small film capacitor. With proposed power decoupling control scheme, the additional advantage of the primary-side regulation of flyback PV inverter is that there is no need to have an extra current sensor for obtaining the ripplecurrent reference of the decoupling current-controller of the power-decoupling buck-boost converter. Therefore, the proposed power decoupling control scheme is cost-effective as well as the size benefit. A new transient analysis is carried out which includes the source voltage dynamics instead of considering the source voltage as a pure voltage source. For verification of the proposed control scheme, simulation and experimental results are presented.

Pulsatile Pressure Distribution on the Snubber of Reciprocating Compressor (왕복동식 압축기의 스너버내 맥동압 분포)

  • Lee, Gyeong-Hwan;Rahman, Mohammad-Shiddiqur;Chung, Han-Shik;Jung, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.606-611
    • /
    • 2007
  • Pulsation is an inherent phenomenon in reciprocating compressors. It interacts with piping to cause vibrations and performance problems. Indiscriminately connecting to a compressor can be dangerous and cost money in the form of broken equipment and piping, poor performance, inaccurate metering, unwanted vibration, and sometimes noise. Piping connected to a compressor can materially affect the performance and response. To minimize these detrimental effects, reciprocating compressor system should be equipped by pulsation suppression system. This study discusses pressure pulsation phenomena occurred in a reciprocating compressor system. An experiment applied air compressor unit, as pulsating pressure generator, has been done. The compressor was connected sequentially to a snubber model and pressure tank. Sensor probes were placed on the inlet and outlet pipes of snubber. Compressor was driven by a motor controlled by a frequency regulator. The experiment was conducted by adjusting the regulator at 40Hz. General information about an internal gas flow can be achieved by numerical analysis approach. Information of the velocity, pressure and turbulence kinetic energy distribution are presented in this paper. Based on this result, the design improvement might be done.

  • PDF

Micromachined Multiple Gas Sensor for Automotive Ventilation and Air Conditioning Systems (미세기계가공된 자동차 HVAC 시스템용 다중 가스센서)

  • Choi, W.S.;Lee, S.H.;Kim, S.D.;Park, J.S.;Park, H.D.;Min, N.K.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1637-1638
    • /
    • 2006
  • HVAC 시스템은 쾌적하고 깨끗한 운전환경을 만들어 줌으로써 운전자에게 향상된 안락성과 안전성을 제공한다. 이때 센서는 시시각각으로 변화하는 차실 내외의 환경변화에 대한 정보를 검출하여 HVAC 제어 유니트에 제공한다. 현재 HVAC 시스템에 사용되고 있는 후막 가스센서는 소자 크기와 소비전력이 크고, 제작공정이 까다로워 생산성이 낮은 단점이 있다. 이와 같은 문제점을 해결하기 위해서 최근에는 초소형화, 저소비전력, 대량생산에 의한 저가격화가 가능한 MEMS 가스센서의 연구개발이 활발히 진행되고 있다. 본 연구에서는 MEMS 구조체를 이용한 마이크로 가스센서를 설계 및 제작하였고, 감도특성을 고찰하였다. 가스 감지막은 금속산화물 페이스트를 스크린 프린팅 하는 종래의 방법 대신 MEMS 구조체에 적용 가능한 sol-gel 프로세스에 의해 형성하였다. 또 가스 감지전극과 micro-heater를 동일 평면상에 제작, 공정을 간소화하여 저가화를 시도하였다. MEMS 구조체 위에 제작된 Pt 박막 micro-heater의 인가전압에 따른 발열특성을 조사한 결과, 발열온도가 인가전압에 비례하는 이상적인 선형성을 나타내었으며, $300^{\circ}C$의 동작 온도에 도달하기 위해 65mW 이하의 저전력 동작이 가능하였다. 가스 센서의 감도특성 확인 실험은 CO 가스 10ppm, NO 가스 0.3ppm을 기준으로 수행되었으며, CO 및 NO에 대해 Rs(sensitivity, 가스반응저항/초기저항) 값은 각각 0.753 과 2.416로 우수한 성능을 나타내었다.

  • PDF