• Title/Summary/Keyword: sensor technology

Search Result 8,681, Processing Time 0.036 seconds

Development of a Single-Joint Optical Torque Sensor with One Body Structure (일체형 구조를 갖는 1축 광학 토크 센서 개발)

  • Gu, Gwang-Min;Chang, Pyung-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.218-222
    • /
    • 2011
  • This paper proposes a single-joint optical torque sensor with one body structure. Conventional optical torque sensors consist of three parts, two plates and an elastic structure. They have slightly slipping problem between plates and elastic structure due to the manufacturing tolerance. Since the order of measurement range of optical sensor is about ten micrometers, the slipping problem causes large measurement error, especially in the case of vibrational or high speed plant. This problem does not occur in the proposed design due to the one body structure. The proposed sensor has advantage of low cost, light weight, and small size. And it is easy to design and manufacture. Simulation works that analysis of stress and strain are performed accurately. To demonstrate the performance of proposed sensor, experiments were implemented to compare with a commercial force/torque sensor (ATI Mini45).

Temperature-difference Flow Sensor Using Multiple Fiber Bragg Gratings

  • Kim, Kyunghwa;Eom, Jonghyun;Sohn, Kyungrak;Shim, Joonhwan
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2022
  • Multiple fiber Bragg gratings (FBGs) have been proposed and demonstrated for gas-flow measurements in a flow channel, using the temperature-difference method. This sensor consists of two FBG temperature sensors and two coil heaters. Coil heaters are used to heat the FBGs. The flow rate of the gas can be obtained by monitoring the difference in the Bragg-wavelength shifts of the two FBGs, which has features that exclude the effect of temperature fluctuations. In this study, experiments are conducted to measure the wavelength shift based on the flow rate, and to evaluate the gas-flow rate in a gas tube. Experimental results show that the sensor has a linear characteristic over a flow-rate range from 0 to 25 ℓ/min. The measured sensitivity of the sensor is 3.2 pm/(ℓ/min) at a coil current of 120 mA.

Towards Choosing Authentication and Encryption: Communication Security in Sensor Networks

  • Youn, Seongwook;Cho, Hyun-chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1307-1313
    • /
    • 2017
  • Sensor networks are composed of provide low powered, inexpensive distributed devices which can be deployed over enormous physical spaces. Coordination between sensor devices is required to achieve a common communication. In low cost, low power and short-range wireless environment, sensor networks cope with significant resource constraints. Security is one of main issues in wireless sensor networks because of potential adversaries. Several security protocols and models have been implemented for communication on computing devices but deployment these models and protocols into the sensor networks is not easy because of the resource constraints mentioned. Memory intensive encryption algorithms as well as high volume of packet transmission cannot be applied to sensor devices due to its low computational speed and memory. Deployment of sensor networks without security mechanism makes sensor nodes vulnerable to potential attacks. Therefore, attackers compromise the network to accept malicious sensor nodes as legitimate nodes. This paper provides the different security models as a metric, which can then be used to make pertinent security decisions for securing wireless sensor network communication.

Development of Safety Sensor for Vehicle-Type Forest Machine in Forest Road

  • Ki-Duck Kim;Hyun-Seung Lee;Gyun-Hyung Kim;Boem-Soo Shin
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.254-260
    • /
    • 2023
  • A sensor system has been developed that uses an ultrasonic sensor to detect the downhill slope on the side of a forest road and prevents a vehicle-type forest machine from rolling down a mountainside. A specular reflection of ultrasonic wave might cause severe issues in measuring distances to targets. By investigating the installation angle of the sensor to minimize the negative effects of specular reflection, the installation angle of lateral monitoring ultrasonic sensor could be determined based on the width of road shoulder. Obstacles such as small rocks or piece of log in a forest road may cause the forest machine to be overturned while the machine riding over due to excessive its posture change. It was determined that the laser sensor could be a part of a sensor system capable of specifying the location and size of small obstacles. Not only this sensor system including ultrasonic and laser sensors can issue a warning of dangerous sections to drivers in forest forwarders currently in use, but also it can be used as a driving safety sensor in autonomous forest machine or remote-control forest machine in the future.

Sensitivity Control and Design of the Silicone Foot Sensor Using FEM (유한요소 해석을 통한 실리콘 족적 센서의 감도 조절 및 설계)

  • Seong, Byuck Kyung;Seo, Hyung Kyu;Lee, Jin Wook;Kwon, Ae-Ran;Kim, Dong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.1041-1050
    • /
    • 2014
  • A design and analysis for new foot sensor that measures pressure distribution while walking or running in daily life is introduced. In the process of the sensor design, the shape, mechanism composing of the sensor, and variables that dominate sensor's sensitivity are investigated. Through these variables analysis, an optimal shape and dimension were determined. The effects of variables on sensor's sensitivity and the relationship between each variable are proved by analyses and experiments.

New Approach for the Efficient Sensor Deployment in Sensor Networks (센서 네트워크에서 효율적인 센서 배치 문제의 새로운 접근 방향)

  • Lee, Cheol-Ki;Lee, Seung-Hak;Yoon, Hyun-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06d
    • /
    • pp.551-554
    • /
    • 2007
  • We propose the new approach for the efficient sensor deployment in sensor networks. In the existing works, they use the approach that guarantee the sensing ability T for any point in the sensor field. However, if the shape of the sensor field is changed or it is composed of the sections that have different importance each other, the previous approach is not efficient. So, in this work, we propose the approach that maximize the average sensing ability and it's necessity.

  • PDF

A Monolithic Integration with A High Density Circular-Shape SOI Microsensor and CMOS Microcontroller IC (CMOS Microcontroller IC와 고밀도 원형모양SOI 마이크로센서의 단일집적)

  • Mike, Myung-Ok;Moon, Yang-Ho
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.1-10
    • /
    • 1997
  • It is well-known that rectangular bulk-Si sensors prepared by etch or epi etch-stop micromachining technology are already in practical use today, but the conventional bulk-Si sensor shows some drawbacks such as large chip size and limited applications as silicon sensor device is to be miniaturized. We consider a circular-shape SOI(Silicon-On-Insulator) micro-cavity technology to facilitate multiple sensors on very small chip, to make device easier to package than conventional sensor like pressure sensor and to provide very high over-pressure capability. This paper demonstrates the cross-functional results for stress analyses(targeting $5{\mu}m$ deflection and 100MPa stress as maximum at various applicable pressure ranges), for finding permissible diaphragm dimension by output sensitivity, and piezoresistive sensor theory from two-type SOI structures where the double SOI structure shows the most feasible deflection and small stress at various ambient pressures. Those results can be compared with the ones of circular-shape bulk-Si based sensor$^{[17]}. The SOI micro-cavity formed the sensors is promising to integrate with calibration, gain stage and controller unit plus high current/high voltage CMOS drivers onto monolithic chip.

  • PDF

A Study on the Development of Height Estimation Sensor for Gondola-typed Façade Robot (곤돌라형 외벽 유지보수 로봇의 수직위치 센서 개발에 관한 연구)

  • Yoon, Jongsu;Kim, Dong Yeop;Park, Chang-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.383-389
    • /
    • 2013
  • Demand for high-rising building has arisen. However, its maintenance is usually executed by labour. It could have a severe problem. We proposed a gondola robot to solve it. In this paper, we designed a height estimation sensor for this gondola. It is consist of pan-tilt unit, ARS sensor, and laser sensor. The pan-tilt unit keeps the laser sensor to indicate the gravity direction by referencing the ARS. The laser sensor's range is vertical distance from gondola to ground. However, if there is an obstacle under the gondola, the distance includes its height. To filter it out, we apply a Kalman filter for the height estimation. If the estimated height is changed extremely, the filter decides that there is an obstacle. Then, it remembers the height of obstacle. Other extreme changes of height estimations are reflected. The experimental results using the proposed sensor system show detail flow of the height estimation.

Limit-current type zirconia oxygen sensor with porous diffusion layer (다공성 확산층을 이용한 한계전류형 지르코니아 산소센서)

  • Oh, Young-Jei;Lee, Chil-Hyoung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.329-337
    • /
    • 2008
  • Simple, small and portable oxygen sensors were fabricated by tape casting technique. Yttria stabilized zirconia containing cordierite ceramics (YSZC) were used as a porous diffused layer of oxygen in pumping cell. Yttria stabilized zirconia (YSZ) solid electrolyte, YSZC porous diffusion layer and heater-patterned ceramic sheets were prepared by co- firing method. Limit current characteristics and the linear relationship of current to oxygen concentration were observed. Viscosity variation of the slurries both YSZ and YSZC showed a similar behavior, but micro pores in the fired sheet were increased with increasing of the cordierite amount. Molecular diffusion was dominated due to the formation of large pores in porous diffusion layer. The plateau range of limit current in porous-type oxygen sensor was narrow than the one of aperture-type oxygen sensor. However limit current curve was appeared in porous-type oxygen sensor even at the lower applied voltage. The plateau range of limit-current was widen as increasing the thickness of porous diffusion layer of the YSZ containing cordierite. Measuring temperature of $600{\sim}650^{\circ}C$ was recommended for limit-current oxygen sensor. Porous diffusion layer-type oxygen sensor showed faster response than the aperture-type one and was stable up to 30 days running without any crack at interface between the layers.

Room Temperature Hydrogen Gas Sensor using Pd/Carbon Nanotubes Buckypaper (팔라듐/탄소나노튜브 버키페이퍼를 이용한 상온감지 수소가스 센서)

  • Han, Maeum;Kim, Jae Keon;Kim, Yeongsam;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.394-398
    • /
    • 2020
  • In this paper, we report the sensing performance of H2 gas sensors composed of Pd/carbon nanotube (CNT) buckypaper at room temperature. The CNT buckypaper was made using a simple filtration process and subsequently deposited with Pd as the sensing material. The sensitivity of the sensor increased with respect to the gas concentration. To investigate the effect of Pd thickness, Pd layers of different thickness were deposited on the buckypaper, and the response of the sensor was evaluated. The proposed sensor exhibits excellent sensing properties with optimized Pd thickness at room temperature (25℃). Pd nanoparticles significantly impact the sensitivity and selectivity of the sensor because of the spillover effect. In addition, the sensor is highly suitable for bendable and wearable devices owing to its structural flexibility.