• Title/Summary/Keyword: sensor routing protocols

Search Result 208, Processing Time 0.034 seconds

Reduced-Pipelined Duty Cycle MAC Protocol (RP-MAC) for Wireless Sensor Network

  • Nguyen, Ngoc Minh;Kim, Myung Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2433-2452
    • /
    • 2017
  • Recently, the pipeline-forwarding has been proposed as a new technique to resolve the end-to-end latency problem of the duty-cycle MAC protocols in Wireless Sensor Networks (WSNs). Some protocols based on this technique such as PMAC and PRI-MAC have shown an improvement not only in terms of reducing end-to-end latency but also in terms of reducing power consumption. In these protocols, however, the sensor nodes still waste a significant amount of energy for unnecessary idle listening during contention period of upstream nodes to check the channel activity. This paper proposes a new pipeline-forwarding duty-cycle MAC protocol, named RP-MAC (Reduced Pipelined duty-cycle MAC), which tries to reduce the waste of energy. By taking advantage of ACK mechanism and shortening the handshaking procedure, RP-MAC minimizes the time for checking the channel and therefore reduces the energy consumption due to unnecessary idle listening. When comparing RP-MAC with the existing solution PRI-MAC and RMAC, our QualNet-based simulation results show a significant improvement in term of energy consumption.

Using Range Extension Cooperative Transmission in Energy Harvesting Wireless Sensor Networks

  • Jung, Jin-Woo;Ingram, Mary Ann
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.169-178
    • /
    • 2012
  • In this paper, we study the advantages of using range extension cooperative transmission (CT) in multi-hop energy harvesting wireless sensor networks (EH-WSNs) from the network layer perspective. EH-WSNs rely on harvested energy, and therefore, if a required service is energy-intensive, the network may not be able to support the service successfully. We show that CT networks that utilize both range extension CT and non-CT routing can successfully support services that cannot be supported by non-CT networks. For a two-hop toy network, we show that range extension CT can provide better services than non-CT. Then, we provide a method of determining the supportable services that can be achieved by using optimal non-CT and CT routing protocols for EH-WSNs. Using our method and network simulations, we justify our claim that CT networks can provide better services than nonCT networks in EH-WSNs.

The Improved Energy Efficient LEACH Protocol Technology of Wireless Sensor Networks

  • Shrestha, Surendra;Kim, Young Min;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.30-35
    • /
    • 2015
  • The most important factor within the wireless sensor network is to have effective network usage and increase the lifetime of the individual nodes in order to operate the wireless network more efficiently. Therefore, many routing protocols have been developed. The LEACH protocol presented by Wendi Hein Zelman, especially well known as a simple and efficient clustering based routing protocol. However, because LEACH protocol in an irregular network is the total data throughput efficiency dropped, the stability of the cluster is declined. Therefore, to increase the stability of the cluster head, in this paper, it proposes a stochastic cluster head selection method for improving the LEACH protocol. To this end, it proposes a SH-LEACH (Stochastic Cluster Head Selection Method-LEACH) that it is combined to the HEED and LEACH protocol and the proposed algorithm is verified through the simulation.

Security Model for Tree-based Routing in Wireless Sensor Networks: Structure and Evaluation

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1223-1247
    • /
    • 2012
  • The need for securing Wireless Sensor Networks (WSNs) is essential especially in mission critical fields such as military and medical applications. Security techniques that are used to secure any network depend on the security requirements that should be achieved to protect the network from different types of attacks. Furthermore, the characteristics of wireless networks should be taken into consideration when applying security techniques to these networks. In this paper, energy efficient Security Model for Tree-based Routing protocols (SMTR) is proposed. In SMTR, different attacks that could face any tree-based routing protocol in WSNs are studied to design a security reference model that achieves authentication and data integrity using either Message Authentication Code (MAC) or Digital Signature (DS) techniques. The SMTR communication and processing costs are mathematically analyzed. Moreover, SMTR evaluation is performed by firstly, evaluating several MAC and DS techniques by applying them to tree-based routing protocol and assess their efficiency in terms of their power requirements. Secondly, the results of this assessment are utilized to evaluate SMTR phases in terms of energy saving, packet delivery success ratio and network life time.

Interference-Free Multipath Routing Protocol for M2M Wireless Network to Enhance Packet Delay Performance (M2M 무선 네트워크에서 패킷 지연 성능 향상을 위한 간섭 회피 다중 경로 라우팅 기법)

  • Heo, Hyeong-Min;Hwang, Jun-Ho;Yoo, Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1259-1266
    • /
    • 2010
  • M2M communication is considered as a key enabling technology to monitor the status of objects, vehicles, humans through auto-configuring wireless networks. In M2M network, there are active research activities to enhance the reliability on data while being collected from wireless sensor network. The reliability issue becomes more important as wireless sensor networks carry multimedia data, which is delay sensitive. The interference caused by the adjacent neighbor sensor nodes is a major factor in network performance degradation, which becomes more severe in multi-hop routing environment. In this paper, we propose inerfernce-free multipath routing protocol for M2M wireless network for enhancement of packet delay performance. The simulation results show that the proposed routing algorithm outperforms the existing routing protocols in terms of packet delay and throughput.

Flexible Disjoint Multipath Routing Protocol Using Local Decision in Wireless Sensor Networks (무선 센서 네트워크에서 지역 결정을 통한 유연한 분리형 다중경로 라우팅 프로토콜)

  • Jung, Kwansoo;Yeom, Heegyun;Park, Hosung;Lee, Jeongcheol;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.11
    • /
    • pp.911-923
    • /
    • 2013
  • Multipath routing is one of challenging issues for improving the reliability of end-to-end data delivery in wireless sensor networks. Recently, a disjointedness and management of path have been studying to enhance the robustness and efficiency of the multipath routing. However, previous multipath routing protocols exploit the disjointed multipath construction method that is not to consider the wireless communication environment. In addition, if a path failures is occurred due to the node or link failures in the irregular network environment, they maintain the multipath through the simple method that to construct a new extra path. Even some of them have no a method. In order to cope with the insufficiency of path management, a hole detouring scheme, to bypass the failures area and construct the new paths, was proposed. However, it also has the problem that requires a heavy cost and a delivery suspension to the some or all paths in the hole detouring process due to the centralized and inflexible path management. Due to these limitations and problems, the previous protocols may lead to the degradation of data delivery reliability and the long delay of emergency data delivery. Thus, we propose a flexible disjoint multipath routing protocol which constructs the radio disjoint multipath by considering irregular and constrained wireless sensor networks. It also exploits a localized management based on the path priority in order to efficiently maintain the flexible disjoint multipath. We perform the simulation to evaluate the performance of the proposed method.

An Energy Harvesting Aware Routing Algorithm for Hierarchical Clustering Wireless Sensor Networks

  • Tang, Chaowei;Tan, Qian;Han, Yanni;An, Wei;Li, Haibo;Tang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.504-521
    • /
    • 2016
  • Recently, energy harvesting technology has been integrated into wireless sensor networks to ameliorate the nodes' energy limitation problem. In theory, the wireless sensor node equipped with an energy harvesting module can work permanently until hardware failures happen. However, due to the change of power supply, the traditional hierarchical network routing protocol can not be effectively adopted in energy harvesting wireless sensor networks. In this paper, we improve the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol to make it suitable for the energy harvesting wireless sensor networks. Specifically, the cluster heads are selected according to the estimation of nodes' harvested energy and consumed energy. Preference is given to the nodes with high harvested energy while taking the energy consumption rate into account. The utilization of harvested energy is mathematically formulated as a max-min optimization problem which maximizes the minimum energy conservation of each node. We have proved that maximizing the minimum energy conservation is an NP-hard problem theoretically. Thus, a polynomial time algorithm has been proposed to derive the near-optimal performance. Extensive simulation results show that our proposed routing scheme outperforms previous works in terms of energy conservation and balanced distribution.

A study on a sequenced directed diffusion algorithm for sensor networks (센서네트워크용 Sequenced Directed Diffusion 기법 연구)

  • Jang, Jae-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.889-896
    • /
    • 2007
  • Advances in wireless networking, micro-fabrication and integration, and embedded microprocessors have enabled a new generation of massive-scale sensor networks. Because each sensor node is limited in size and capacity, it is very important to design a new simple and energy efficient protocol. Among conventional sensor networks' routing protocols, the directed diffusion scheme is widely blown because of its simplicity. This scheme, however, has a defect in that sending interest and exploratory data messages while setting connection paths consumes much energy because of its flooding scheme. Therefore, this paper proposes a new sensor network routing protocol, called sequenced directed diffusion with a threshold control, which compromises the conventional directed diffusion scheme's defect and offers an energy efficient routing idea. With a computer simulation, its performance is evaluated and compared to the conventional directed diffusion scheme. Numerical results show that the proposed scheme offers energy efficiency while routing packets, and resolves ill-balanced energy consumption among sensor nodes.

Solar Energy Harvesting Wireless Sensor Network Simulator (태양 에너지 기반 무선 센서 네트워크 시뮬레이터)

  • Yi, Jun Min;Kang, Min Jae;Noh, Dong Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.477-485
    • /
    • 2015
  • Most existing simulators for wireless sensor networks(WSNs) are modeling battery-based sensors and providing MAC and routing protocols designed for battery-based WSNs. However, recently, as energy harvesting sensor systems have been studied more extensively, there is an increasing need for appropriate simulators, but few related studies have employed such simulators. Unlike existing simulators, simulators for energy harvesting WSNs require a new energy model that is integrated with the energy-harvesting model, rechargeable battery model, and energy-consuming model. Additionally, it should enable the applications of the well-known MAC and routing protocols designed for energy-harvesting WSNs, as well as a user-friendly interface for convenience. In this work, we design and implement a user-friendly simulator for solar energy-harvesting WSNs.

A routing Algorithm by Broadcasting a Bitmap in Wireless Sensor Networks (무선 센서 네트워크에서의 비트맵 브로드캐스팅 라우팅 알고리즘)

  • Jung Sang-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.459-468
    • /
    • 2006
  • Current routing in sensor networks focuses on finding methods for energy-efficient route setup and reliable relaying of data from the sensors to the sink so that the lifetime of the network is maximized. The existing routing protocols do not have routing tables to determine a path when packets are transferred. A sensor network by a routing table increases a cost of maintaining and updating a path, because sensor nodes have characteristics to be mobile and constrained capacity and resources. This paper proposes a new routing algorithm by broadcasting a bitmap in order to reduce the number of messages transferred when routing paths are established. Each node has a routing table with a bitmap, which contains link information. A bitmap is formed two-dimensional array, which consists of each row and column represented with a bit. The node only updates its own bitmap if it receives a bitmap from another adjacent nodes after the broadcasting. There by, each node has a bitmap with partial links information not total links information on the network. The proposed routing algorithm reduces the number of messages for routing establishment at least 10% compared with the previous algorithms.