• Title/Summary/Keyword: sensor routing protocols

Search Result 208, Processing Time 0.019 seconds

PRESSURE BASED ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS: A SURVEY

  • Khasawneh, Ahmad;Bin Abd Latiff, Muhammad Shafie;Chizari, Hassan;Tariq, MoeenUddin;Bamatraf, Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.504-527
    • /
    • 2015
  • Underwater wireless sensor networks (UWSNs) are similar to the terrestrial sensor networks. Nevertheless, there are different characteristics among them such as low battery power, limited bandwidth and high variable propagation delay. One of the common major problems in UWSNs is determining an efficient and reliable routing between the source node and the destination node. Therefore, researchers tend to design efficient protocols with consideration of the different characteristics of underwater communication. Furthermore, many routing protocols have been proposed and these protocols may be classified as location-based and location-free routing protocols. Pressure-based routing protocols are a subcategory of the location-free routing protocols. This paper focuses on reviewing the pressure-based routing protocols that may further be classified into non-void avoidance protocols and void avoidance protocols. Moreover, non-void avoidance protocols have been classified into single factor based and multi factor based routing protocols. Finally, this paper provides a comparison between these protocols based on their features, performance and simulation parameters and the paper concludes with some future works on which further study can be conducted.

Fuzzy based Energy-Efficient Adaptive Routing Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 퍼지 기반 적응형 라우팅 알고리즘 및 시뮬레이션)

  • Hong, Soon-Oh;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.4
    • /
    • pp.95-106
    • /
    • 2005
  • Recent advances in wireless sensor networks have led to many routing protocols designed for energy-efficiency in wireless sensor networks. Despite that many routing protocols have been proposed in wireless sensor networks, a single routing protocol cannot be energy-efficient if the environment of the sensor network varies. This paper presents a fuzzy logic based Adaptive Routing (FAR) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment. A simulation is performed to show the usefulness of the proposed algorithm.

  • PDF

Cluster Head Chain Routing Protocol suitable for Wireless Sensor Networks in Nuclear Power Plants (원전 무선 센서 네트워크에 적합한 클러스터 헤드 체인 라우팅 프로토콜)

  • Jung, Sungmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.61-68
    • /
    • 2020
  • Nuclear power plants have a lower cost of power generation, and they are more eco-friendly than other power generation plants. Also, we need to prepare nuclear plant accidents because of their severe damage. In the event of a safety accident, such as a radiation leak, by applying a wireless sensor network to a nuclear power plant, many sensor nodes can be used to monitor radiation and transmit information to an external base station to appropriately respond to the accident. However, applying a wireless sensor network to nuclear power plants requires routing protocols that consider the sensor network size and bypass obstacles such as plant buildings. In general, the hierarchical-based routing protocols are efficient in energy consumption. In this study, we look into the problems that may occur if hierarchical-based routing protocols are applied to nuclear power plants and propose improved routing protocols to solve these problems. Simulation results show that the proposed routing protocol is more effective in energy consumption than the existing LEACH protocol.

Modeling and Simulation for using Multiple Routing Protocols in Wireless Sensor Networks (무선 센서 네트워크에서 다중 라우팅 프로토콜 사용을 위한 모델링과 시뮬레이션)

  • Nam, Su Man;Cho, Tae Ho;Kim, Hyung Jong
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.73-82
    • /
    • 2020
  • In the fourth industrial revolution, wireless sensor networks (WSNs) are an important element of collecting and analyzing data in a variety of environments without human intervention. This sensor network is greatly affected by topology and routing protocols. Routing protocols, which affect energy consumption, are executed after deploying sensor nodes. Once built, they are difficult to change. Before the WSN is deployed, a routing protocol is carefully selected in view of various environments and the performance of the protocol is evaluated. In this paper, we propose a model to simulate multiple routing protocols using a discrete event system specification (DEVS). The DEVS-based proposed model simulates various situations without changes and structures of the its model as algorithms of the routing protocols are implemented in its coordinators model. To verify normal behaviors of the proposed model, the number of report delivery and the energy consumption of the sensor network were compared using representative protocols LEACH and Dijkstra. As a result, it was confirmed that the proposed model executes normally in both routing protocols.

Discrete-Event Based Packet Simulation for Sensor Network Routing Protocols (분산이벤트 기반 센서네트워크 패킷 라우팅 프로토클 시뮬레이션)

  • Chung, Kyung-Yul;Lee, Hoo-Rock;Choi, Dae-Seok;Kim, Yong-Sik;Lee, Soo-Tae;Rhyu, Keel-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.79-81
    • /
    • 2006
  • Simulation and physical implementation are both valuable tools in evaluating sensor network routing protocols, but neither alone is sufficient. In this paper, we present the implementation and analysis of sensor routing protocols on the discrete-event simulation system that allows existing nesC codes of sensor network routing protocols to be used to create a physical implementation of the same protocol. We have evaluated the Surge function of TinyOS through example implementations in the Ptolemy II of the unmodified codes and Direct-diffusion routing protocols using VIPTOS simulation models.

  • PDF

The Wormhole Routing Attack in Wireless Sensor Networks (WSN)

  • Sharif, Lukman;Ahmed, Munir
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.177-184
    • /
    • 2010
  • Secure routing is vital to the acceptance and use of Wireless Sensor Networks (WSN) for many applications. However, providing secure routing in WSNs is a challenging task due to the inherently constrained capabilities of sensor nodes. Although a wide variety of routing protocols have been proposed for WSNs, most do not take security into account as a main goal. Routing attacks can have devastating effects on WSNs and present a major challenge when designing robust security mechanisms for WSNs. In this paper, we examine some of the most common routing attacks in WSNs. In particular, we focus on the wormhole routing attack in some detail. A variety of countermeasures have been proposed in the literature for such attacks. However, most of these countermeasures suffer from flaws that essentially render them ineffective for use in large scale WSN deployments. Due to the inherent constraints found in WSNs, there is a need for lightweight and robust security mechanisms. The examination of the wormhole routing attack and some of the proposed countermeasures makes it evident that it is extremely difficult to retrofit existing protocols with defenses against routing attacks. It is suggested that one of the ways to approach this rich field of research problems in WSNs could be to carefully design new routing protocols in which attacks such as wormholes can be rendered meaningless.

A Cluster-Based Energy-Efficient Routing Protocol without Location Information for Sensor Networks

  • Lee, Gil-Jae;Kong, Jong-Uk;Lee, Min-Sun;Byeon, Ok-Hwan
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.49-54
    • /
    • 2005
  • With the recent advances in Micro Electro Mechanical System (MEMS) technology, low cost and low power consumption wireless micro sensor nodes have become available. However, energy-efficient routing is one of the most important key technologies in wireless sensor networks as sensor nodes are highly energy-constrained. Therefore, many researchers have proposed routing protocols for sensor networks, especially cluster-based routing protocols, which have many advantages such as reduced control messages, bandwidth re-usability, and improved power control. Some protocols use information on the locations of sensor nodes to construct clusters efficiently. However, it is rare that all sensor nodes know their positions. In this article, we propose another cluster-based routing protocol for sensor networks. This protocol does not use information concerning the locations of sensor nodes, but uses the remaining energy of sensor networks and the desirable number of cluster heads according to the circumstances of the sensor networks. From performance simulation, we found that the proposed protocol shows better performance than the low-energy adaptive clustering hierarchy (LEACH).

The Simulation of a Multipath Routing Algorithm in Sensor Networks (센서 네트워크에서 멀티패스 라우팅 알고리즘의 시뮬레이션)

  • Jung Won-do;Kim Ki-Hyung;Sohn Young-Ho
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.144-148
    • /
    • 2005
  • The sensor network consists of sensor nodes which communicate wirelessly. It requires energy-efficient routing protocols. We measure requirements in routing protocols by using simulation techniques. In this paper, we propose a random routing algorithm and evaluate it by simulation.

  • PDF

A Survey of QoS Based Routing Protocols for Wireless Sensor Networks

  • Sumathi, R.;Srinivas, M.G.
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.589-602
    • /
    • 2012
  • With the increasing demand for real time applications in the Wireless Senor Network (WSN), real time critical events anticipate an efficient quality-of-service (QoS) based routing for data delivery from the network infrastructure. Designing such QoS based routing protocol to meet the reliability and delay guarantee of critical events while preserving the energy efficiency is a challenging task. Considerable research has been focused on developing robust energy efficient QoS based routing protocols. In this paper, we present the state of the research by summarizing the work on QoS based routing protocols that has already been published and by highlighting the QoS issues that are being addressed. The performance comparison of QoS based routing protocols such as SAR, MMSPEED, MCMP, MCBR, and EQSR has also been analyzed using ns-2 for various parameters.

A Comparative Analysis on Performance of Wireless Sensor Networks Routing Protocols

  • KRISHNA, KONDA. HARI;NAGPAL, TAPSI;BABU, Y. SURESH
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.240-244
    • /
    • 2022
  • The common goals of designing a routing algorithm are not only to reduce control packet overhead, maximize throughput and minimize the end-to-end delay, but also take into consideration the energy consumption. Scalability is an important factor in designing an efficient routing protocol for wireless sensor networks (WSN's). Three metrics (power consumption, time of transmission and packet loss rate) are used in order to compare three routing protocols which are AODV, DSDV and LEACH.