Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
Advances in concrete construction
/
v.11
no.1
/
pp.1-9
/
2021
This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.6
/
pp.1849-1876
/
2022
Wireless Sensor Network (WSN) is considered as an integral part of the Internet of Things (IoT) for collecting real-time data from the site having many applications in industry 4.0 and smart cities. The task of nodes is to sense the environment and send the relevant information over the internet. Though this task seems very straightforward but it is vulnerable to certain issues like energy consumption, delay, throughput, etc. To efficiently address these issues, this work develops a cross-layer model for the optimization between MAC and the Network layer of the OSI model for WSN. A high value of duty cycle for nodes is selected to control the delay and further enhances data transmission reliability. A node measurement prediction system based on the Kalman filter has been introduced, which uses the constraint based on covariance value to decide the scheduling scheme of the nodes. The concept of duty cycle for node scheduling is employed with a greedy data forwarding scheme. The proposed Duty Cycle-based Greedy Routing (DCGR) scheme aims to minimize the hop count, thereby mitigating the energy consumption rate. The proposed algorithm is tested using a real-world wastewater treatment dataset. The proposed method marks an 87.5% increase in the energy efficiency and reduction in the network latency by 61% when validated with other similar pre-existing schemes.
Recently, with the development of IoT communication technology, products and services that detect and inform the surrounding environment under the name of smart plugs are being developed. In particular, in order to prepare for fire or gas leakage accidents, products that automatically close and warn when abnormal symptoms occur are used. Most of them use methods of collecting, analyzing, and processing information through networks. However, there is a disadvantage that it cannot be used when the network is temporarily in a failed state. In this paper, sensor information was analyzed using deep learning, and a model that can predict abnormal symptoms was learned in advance and applied to MCU. The performance of each model was evaluated by developing firmware that can judge and process on its own regardless of network and applying a predictive model to the MCU after 3 to 120 seconds.
IEMEK Journal of Embedded Systems and Applications
/
v.17
no.4
/
pp.191-197
/
2022
This study proposes an image-based Pose Intention Network (PIN) algorithm for rehabilitation via patients' intentions. The purpose of the PIN algorithm is for enabling an active rehabilitation exercise, which is implemented by estimating the patient's motion and classifying the intention. Existing rehabilitation involves the inconvenience of attaching a sensor directly to the patient's skin. In addition, the rehabilitation device moves the patient, which is a passive rehabilitation method. Our algorithm consists of two steps. First, we estimate the user's joint position through the OpenPose algorithm, which is efficient in estimating 2D human pose in an image. Second, an intention classifier is constructed for classifying the motions into three categories, and a sequence of images including joint information is used as input. The intention network also learns correlations between joints and changes in joints over a short period of time, which can be easily used to determine the intention of the motion. To implement the proposed algorithm and conduct real-world experiments, we collected our own dataset, which is composed of videos of three classes. The network is trained using short segment clips of the video. Experimental results demonstrate that the proposed algorithm is effective for classifying intentions based on a short video clip.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.82-84
/
2021
Through the smart factory construction project, sensor data such as power, vibration, pressure, and temperature are collected from production facilities, and services such as predictive maintenance, defect prediction, and abnormality detection are developed through data analysis. In general, in the case of manufacturing data, because the imbalance between normal and abnormal data is extreme, an anomaly detection service is preferred. In this paper, FFT method is used to extract feature data of manufacturing data as a pre-stage of the anomaly detection service development. Using this method, we classified the produced products and confirmed results. In other words, after FFT of the representative pattern for each product, we verified whether product classification was possible or not, by calculating correlation coefficient.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.559-561
/
2022
In order to secure the stability of tap water production and supply, we have built a system that can be pre-verified before applying AI-based composite sensors to the water purification plant, which is a demonstration site. We have collected and analyzed data related to the drug input of the GO-RYEONG water purification plant for about two years from December 2019 to December 2021. The outliers of each tag were removed through data preprocessing such as outliers and derived variable, and the cycle was set as average data for 60 minutes of each one-minute period, and the model was learned using the PLS model.
Surface-enhanced Raman scattering (SERS) enables the detection of various types of π-conjugated biological and chemical molecules owing to its exceptional sensitivity in obtaining unique spectra, offering nondestructive classification capabilities for target analytes. Herein, we demonstrate an innovative strategy that provides significant machine learning (ML)-enabled predictive SERS platforms through surface-engineered graphene via complementary hybridization with Au nanoparticles (NPs). The hybridized Au NPs/graphene SERS platforms showed exceptional sensitivity (10-7 M) due to the collaborative strong correlation between the localized electromagnetic effect and the enhanced chemical bonding reactivity. The chemical and physical properties of the demonstrated SERS platform were systematically investigated using microscopy and spectroscopic analysis. Furthermore, an innovative strategy employing ML is proposed to predict various analytes based on a featured Raman spectral database. Using a customized data-preprocessing algorithm, the feature data for ML were extracted from the Raman peak characteristic information, such as intensity, position, and width, from the SERS spectrum data. Additionally, sophisticated evaluations of various types of ML classification models were conducted using k-fold cross-validation (k = 5), showing 99% prediction accuracy.
Korean Journal of Agricultural and Forest Meteorology
/
v.23
no.4
/
pp.316-328
/
2021
In this study, the leaf Na content prediction model for spring potato was established using 400-1000 nm hyperspectral sensor to develop the multispectral sensor for the salinity monitoring in reclaimed land. The irrigation conditions were standard, drought, and salinity (2, 4, 8 dS/m), and the irrigation amount was calculated based on the amount of evaporation. The leaves' Na contents were measured 1st and 2nd weeks after starting irrigation in the vegetative, tuber formative, and tuber growing periods, respectively. The reflectance of the leaves was converted from 5 nm to 10 nm, 25 nm, and 50 nm of FWHM (full width at half maximum) based on the 10 nm wavelength intervals. Using the variance importance in projections of partial least square regression(PLSR-VIP), ten band ratios were selected as the variables to predict salinity damage levels with Na content of spring potato leaves. The MLR(Multiple linear regression) models were estimated by removing the band ratios one by one in the order of the lowest weight among the ten band ratios. The performance of models was compared by not only R2, MAPE but also the number of band ratios, optimal FWHM to develop the compact multispectral sensor. It was an advantage to use 25 nm of FWHM to predict the amount of Na in leaves for spring potatoes during the 1st and 2nd weeks vegetative and tuber formative periods and 2 weeks tuber growing periods. The selected bandpass filters were 15 bands and mainly in red and red-edge regions such as 430/440, 490/500, 500/510, 550/560, 570/580, 590/600, 640/650, 650/660, 670/680, 680/690, 690/700, 700/710, 710/720, 720/730, 730/740 nm.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.11
/
pp.570-576
/
2020
This study uses beacons and smartphone Global Positioning System (GPS) receivers to establish a location-based disaster/hazard prediction system. Beacons are usually installed indoors to locate users using triangulation in the room, but this study is differentiated from previous studies because the system is used outdoors to collect information on registration location and temperature and humidity in hazardous areas. In addition, since it is installed outdoors, waterproof, dehumidifying, and dustproof functions in the beacons themselves are required, and in case of heat and humidity, the sensor must be exposed to the outside, so the waterproof function is supplemented with a separate container. Based on these functions, information on declining and vulnerable areas is identified in real time, and temperature/humidity information is collected. We also propose a system that provides weather and fine-dust information for the area concerned. User location data are acquired through beacons and smartphone GPS receivers, and when users transmit from declining or vulnerable areas, they can establish the data to identify dangerous areas. In addition, temperature/humidity data in a microspace can be collected and utilized to build data to cope with climate change. Data can be used to identify specific areas of decline in a microspace, and various analyses can be made through the accumulated data.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.12
no.6
/
pp.672-680
/
2019
This paper proposes "A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning" which gathers bio-sensor data from farms, diagnoses the diseases of growing crops, and predicts the year's harvest. The platform collects all the information currently available such as weather and soil microbes, optimizes the farm environment so that the crops can grow well, diagnoses the crop's diseases by using the leaves of the crops being grown on the farm, and predicts this year's harvest by using all the information on the farm. The result shows that the average accuracy of the AEOM is about 15% higher than that of the RF and about 8% higher than the GBD. Although data increases, the accuracy is reduced less than that of the RF or GBD. The linear regression shows that the slope of accuracy is -3.641E-4 for the ReLU, -4.0710E-4 for the Sigmoid, and -7.4534E-4 for the step function. Therefore, as the amount of test data increases, the ReLU is more accurate than the other two activation functions. This paper is a platform for managing the entire farm and, if introduced to actual farms, will greatly contribute to the development of smart farms in Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.