• Title/Summary/Keyword: sensor prediction

Search Result 567, Processing Time 0.034 seconds

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.

A Novel Duty Cycle Based Cross Layer Model for Energy Efficient Routing in IWSN Based IoT Application

  • Singh, Ghanshyam;Joshi, Pallavi;Raghuvanshi, Ajay Singh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1849-1876
    • /
    • 2022
  • Wireless Sensor Network (WSN) is considered as an integral part of the Internet of Things (IoT) for collecting real-time data from the site having many applications in industry 4.0 and smart cities. The task of nodes is to sense the environment and send the relevant information over the internet. Though this task seems very straightforward but it is vulnerable to certain issues like energy consumption, delay, throughput, etc. To efficiently address these issues, this work develops a cross-layer model for the optimization between MAC and the Network layer of the OSI model for WSN. A high value of duty cycle for nodes is selected to control the delay and further enhances data transmission reliability. A node measurement prediction system based on the Kalman filter has been introduced, which uses the constraint based on covariance value to decide the scheduling scheme of the nodes. The concept of duty cycle for node scheduling is employed with a greedy data forwarding scheme. The proposed Duty Cycle-based Greedy Routing (DCGR) scheme aims to minimize the hop count, thereby mitigating the energy consumption rate. The proposed algorithm is tested using a real-world wastewater treatment dataset. The proposed method marks an 87.5% increase in the energy efficiency and reduction in the network latency by 61% when validated with other similar pre-existing schemes.

Development of a Deep Learning Prediction Model to Recognize Dangerous Situations in a Gas-use Environment (가스 사용 환경에서의 위험 상황 인지를 위한 딥러닝 예측모델 개발)

  • Kang, Byung Jun;Cho, Hyun-Chan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.132-135
    • /
    • 2022
  • Recently, with the development of IoT communication technology, products and services that detect and inform the surrounding environment under the name of smart plugs are being developed. In particular, in order to prepare for fire or gas leakage accidents, products that automatically close and warn when abnormal symptoms occur are used. Most of them use methods of collecting, analyzing, and processing information through networks. However, there is a disadvantage that it cannot be used when the network is temporarily in a failed state. In this paper, sensor information was analyzed using deep learning, and a model that can predict abnormal symptoms was learned in advance and applied to MCU. The performance of each model was evaluated by developing firmware that can judge and process on its own regardless of network and applying a predictive model to the MCU after 3 to 120 seconds.

Behavior Pattern Prediction Algorithm Based on 2D Pose Estimation and LSTM from Videos (비디오 영상에서 2차원 자세 추정과 LSTM 기반의 행동 패턴 예측 알고리즘)

  • Choi, Jiho;Hwang, Gyutae;Lee, Sang Jun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.191-197
    • /
    • 2022
  • This study proposes an image-based Pose Intention Network (PIN) algorithm for rehabilitation via patients' intentions. The purpose of the PIN algorithm is for enabling an active rehabilitation exercise, which is implemented by estimating the patient's motion and classifying the intention. Existing rehabilitation involves the inconvenience of attaching a sensor directly to the patient's skin. In addition, the rehabilitation device moves the patient, which is a passive rehabilitation method. Our algorithm consists of two steps. First, we estimate the user's joint position through the OpenPose algorithm, which is efficient in estimating 2D human pose in an image. Second, an intention classifier is constructed for classifying the motions into three categories, and a sequence of images including joint information is used as input. The intention network also learns correlations between joints and changes in joints over a short period of time, which can be easily used to determine the intention of the motion. To implement the proposed algorithm and conduct real-world experiments, we collected our own dataset, which is composed of videos of three classes. The network is trained using short segment clips of the video. Experimental results demonstrate that the proposed algorithm is effective for classifying intentions based on a short video clip.

Manufacturing Data Preprocessing Method and Product Classification Method using FFT (FFT를 활용한 제조데이터 전처리 및 제품분류)

  • Kim, Han-sol;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.82-84
    • /
    • 2021
  • Through the smart factory construction project, sensor data such as power, vibration, pressure, and temperature are collected from production facilities, and services such as predictive maintenance, defect prediction, and abnormality detection are developed through data analysis. In general, in the case of manufacturing data, because the imbalance between normal and abnormal data is extreme, an anomaly detection service is preferred. In this paper, FFT method is used to extract feature data of manufacturing data as a pre-stage of the anomaly detection service development. Using this method, we classified the produced products and confirmed results. In other words, after FFT of the representative pattern for each product, we verified whether product classification was possible or not, by calculating correlation coefficient.

  • PDF

Development of Drug Input Analysis and Prediction Model Using AI-based Composite Sensors Pre-Verification System (AI 기반 복합센서 사전검증시스템을 활용한 약품투입량 분석 및 예측모델 개발)

  • Seong, Min-Seok;Kim, Kuk-Il;An, Sang-Byung;Hong, Sung-Taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.559-561
    • /
    • 2022
  • In order to secure the stability of tap water production and supply, we have built a system that can be pre-verified before applying AI-based composite sensors to the water purification plant, which is a demonstration site. We have collected and analyzed data related to the drug input of the GO-RYEONG water purification plant for about two years from December 2019 to December 2021. The outliers of each tag were removed through data preprocessing such as outliers and derived variable, and the cycle was set as average data for 60 minutes of each one-minute period, and the model was learned using the PLS model.

  • PDF

Surface-Engineered Graphene surface-enhanced Raman scattering Platform with Machine-learning Enabled Classification of Mixed Analytes

  • Jae Hee Cho;Garam Bae;Ki-Seok An
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.139-146
    • /
    • 2024
  • Surface-enhanced Raman scattering (SERS) enables the detection of various types of π-conjugated biological and chemical molecules owing to its exceptional sensitivity in obtaining unique spectra, offering nondestructive classification capabilities for target analytes. Herein, we demonstrate an innovative strategy that provides significant machine learning (ML)-enabled predictive SERS platforms through surface-engineered graphene via complementary hybridization with Au nanoparticles (NPs). The hybridized Au NPs/graphene SERS platforms showed exceptional sensitivity (10-7 M) due to the collaborative strong correlation between the localized electromagnetic effect and the enhanced chemical bonding reactivity. The chemical and physical properties of the demonstrated SERS platform were systematically investigated using microscopy and spectroscopic analysis. Furthermore, an innovative strategy employing ML is proposed to predict various analytes based on a featured Raman spectral database. Using a customized data-preprocessing algorithm, the feature data for ML were extracted from the Raman peak characteristic information, such as intensity, position, and width, from the SERS spectrum data. Additionally, sophisticated evaluations of various types of ML classification models were conducted using k-fold cross-validation (k = 5), showing 99% prediction accuracy.

Development of Prediction Model for the Na Content of Leaves of Spring Potatoes Using Hyperspectral Imagery (초분광 영상을 이용한 봄감자의 잎 Na 함량 예측 모델 개발)

  • Park, Jun-Woo;Kang, Ye-Seong;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Kyung-Suk;Kim, Tae-Yang;Park, Min-Jun;Baek, Hyeon-Chan;Song, Hye-Young;Jun, Sae-Rom;Lee, Su-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.316-328
    • /
    • 2021
  • In this study, the leaf Na content prediction model for spring potato was established using 400-1000 nm hyperspectral sensor to develop the multispectral sensor for the salinity monitoring in reclaimed land. The irrigation conditions were standard, drought, and salinity (2, 4, 8 dS/m), and the irrigation amount was calculated based on the amount of evaporation. The leaves' Na contents were measured 1st and 2nd weeks after starting irrigation in the vegetative, tuber formative, and tuber growing periods, respectively. The reflectance of the leaves was converted from 5 nm to 10 nm, 25 nm, and 50 nm of FWHM (full width at half maximum) based on the 10 nm wavelength intervals. Using the variance importance in projections of partial least square regression(PLSR-VIP), ten band ratios were selected as the variables to predict salinity damage levels with Na content of spring potato leaves. The MLR(Multiple linear regression) models were estimated by removing the band ratios one by one in the order of the lowest weight among the ten band ratios. The performance of models was compared by not only R2, MAPE but also the number of band ratios, optimal FWHM to develop the compact multispectral sensor. It was an advantage to use 25 nm of FWHM to predict the amount of Na in leaves for spring potatoes during the 1st and 2nd weeks vegetative and tuber formative periods and 2 weeks tuber growing periods. The selected bandpass filters were 15 bands and mainly in red and red-edge regions such as 430/440, 490/500, 500/510, 550/560, 570/580, 590/600, 640/650, 650/660, 670/680, 680/690, 690/700, 700/710, 710/720, 720/730, 730/740 nm.

Establishment of location-base service(LBS) disaster risk prediction system in deteriorated areas (위치기반(LBS) 쇠퇴지역 재난재해 위험성 예측 시스템 구축)

  • Byun, Sung-Jun;Cho, Yong Han;Choi, Sang Keun;Jo, Bong Rae;Lee, Gun Won;Min, Byung-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.570-576
    • /
    • 2020
  • This study uses beacons and smartphone Global Positioning System (GPS) receivers to establish a location-based disaster/hazard prediction system. Beacons are usually installed indoors to locate users using triangulation in the room, but this study is differentiated from previous studies because the system is used outdoors to collect information on registration location and temperature and humidity in hazardous areas. In addition, since it is installed outdoors, waterproof, dehumidifying, and dustproof functions in the beacons themselves are required, and in case of heat and humidity, the sensor must be exposed to the outside, so the waterproof function is supplemented with a separate container. Based on these functions, information on declining and vulnerable areas is identified in real time, and temperature/humidity information is collected. We also propose a system that provides weather and fine-dust information for the area concerned. User location data are acquired through beacons and smartphone GPS receivers, and when users transmit from declining or vulnerable areas, they can establish the data to identify dangerous areas. In addition, temperature/humidity data in a microspace can be collected and utilized to build data to cope with climate change. Data can be used to identify specific areas of decline in a microspace, and various analyses can be made through the accumulated data.

A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning (IoT 및 딥 러닝 기반 스마트 팜 환경 최적화 및 수확량 예측 플랫폼)

  • Choi, Hokil;Ahn, Heuihak;Jeong, Yina;Lee, Byungkwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.672-680
    • /
    • 2019
  • This paper proposes "A Smart Farm Environment Optimization and Yield Prediction Platform based on IoT and Deep Learning" which gathers bio-sensor data from farms, diagnoses the diseases of growing crops, and predicts the year's harvest. The platform collects all the information currently available such as weather and soil microbes, optimizes the farm environment so that the crops can grow well, diagnoses the crop's diseases by using the leaves of the crops being grown on the farm, and predicts this year's harvest by using all the information on the farm. The result shows that the average accuracy of the AEOM is about 15% higher than that of the RF and about 8% higher than the GBD. Although data increases, the accuracy is reduced less than that of the RF or GBD. The linear regression shows that the slope of accuracy is -3.641E-4 for the ReLU, -4.0710E-4 for the Sigmoid, and -7.4534E-4 for the step function. Therefore, as the amount of test data increases, the ReLU is more accurate than the other two activation functions. This paper is a platform for managing the entire farm and, if introduced to actual farms, will greatly contribute to the development of smart farms in Korea.