• Title/Summary/Keyword: sensor prediction

Search Result 567, Processing Time 0.029 seconds

A Study on Correlation Analysis and Preference Prediction for Point-of-Interest Recommendation (Point-of-Interest 추천을 위한 매장 간 상관관계 분석 및 선호도 예측 연구)

  • Park, So-Hyun;Park, Young-Ho;Park, Eun-Young;Ihm, Sun-Young
    • Journal of Digital Contents Society
    • /
    • v.19 no.5
    • /
    • pp.871-880
    • /
    • 2018
  • Recently, the technology of recommendation of POI (Point of Interest) related technology is getting attention with the increase of big data related to consumers. Previous studies on POI recommendation systems have been limited to specific data sets. The problem is that if the study is carried out with this particular dataset, it may be suitable for the particular dataset. Therefore, this study analyzes the similarity and correlation between stores using the user visit data obtained from the integrated sensor installed in Seoul and Songjeong roads. Based on the results of the analysis, we study the preference prediction system which recommends the stores that new users are interested in. As a result of the experiment, various similarity and correlation analysis were carried out to obtain a list of relevant stores and a list of stores with low relevance. In addition, we performed a comparative experiment on the preference prediction accuracy under various conditions. As a result, it was confirmed that the jacquard similarity based item collaboration filtering method has higher accuracy than other methods.

Monitoring and Analysis of Galileo Services Performance using GalTeC

  • Su, H.;Ehret, W.;Blomenhofer, H.;Blomenhofer, E.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.235-240
    • /
    • 2006
  • The paper will give an overview of the mission of GalTeC and then concentrate on two main aspects. The first more detailed aspect, is the analysis of the key performance parameters for the Galileo system services and presenting a technical overview of methods and algorithms used. The second more detailed aspect, is the service volume prediction including service dimensioning using the Prediction tool. In order to monitor and validate the Galileo SIS performance for Open Service (OS) and Safety Of Life services (SOL) regarding the key performance parameters, different analyses in the SIS domain and User domain are considered. In the SIS domain, the validation of Signal-in-Space Accuracy SISA and Signal-in-Space Monitoring Accuracy SISMA is performed. For this purpose first of all an independent OD&TS and Integrity determination and processing software is developed to generate the key reference performance parameters named as SISRE (Signal In Space Reference Errors) and related over-bounding statistical information SISRA (Signal In Space Reference Accuracy) based on raw measurements from independent sites (e.g. IGS), Galileo Ground Sensor Stations (GSS) or an own regional monitoring network. Secondly, the differences of orbits and satellite clock corrections between Galileo broadcast ephemeris and the precise reference ephemeris generated by GalTeC will also be compared to check the SIS accuracy. Thirdly, in the user domain, SIS based navigation solution PVT on reference sites using Galileo broadcast ephemeris and the precise ephemeris generated by GalTeC are also used to check key performance parameters. In order to demonstrate the GalTeC performance and the methods mentioned above, the paper presents an initial test result using GPS raw data and GPS broadcast ephemeris. In the tests, some Galileo typical performance parameters are used for GPS system. For example, the maximum URA for one day for one GPS satellite from GPS broadcast ephemeris is used as substitution of SISA to check GPS ephemeris accuracy. Using GalTeC OD&TS and GPS raw data from IGS reference sites, a 10 cm-level of precise orbit determination can be reached. Based on these precise GPS orbits from GalTeC, monitoring and validation of GPS performance can be achieved with a high confidence level. It can be concluded that one of the GalTeC missions is to provide the capability to assess Galileo and general GNSS performance and prediction methods based on a regional and global monitoring networks. Some capability, of which first results are shown in the paper, will be demonstrated further during the planned Galileo IOV phase, the Full Galileo constellation phase and for the different services particularly the Open Services and the Safety Of Life services based on the Galileo Integrity concept.

  • PDF

Classification of behavioral signs of the mares for prediction of the pre-foaling period

  • Jung, Youngwook;Jung, Heejun;Jang, Yongseok;Yoon, Duhak;Yoon, Minjung
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.99-105
    • /
    • 2021
  • In horse management, the alarm system with sensors in the foaling period enables the breeder can appropriately prepare the time of the parturition. It is important to prevent losses by unpredictable parturition because there are several high risks such as dystocia and the death of foals and mares during foaling. However, unlike analysis in the alarm system that detects specific motions has been widely performed, analysis of classification following specific behavior patterns or number needs to be more organized. Thus, the objective of this study is to classify signs of the specific behaviors of the mares for the prediction of pre-foaling behaviors. Five Thoroughbred mares (9-20 yrs) were randomly selected for observation of the pre-foaling behaviors. The behaviors were monitored for 90 min that was divided into three different periods as 1) from -90 to -60 min, 2) from -60 to -30 min, 3) from -30 min to the time for the discharge of the amniotic fluid, respectively. The behaviors were divided into two different categories as state and frequent behaviors and each specific behavioral pattern for classification was individually described. In the state behaviors, the number of mares in the standing of the foaling group (3.17 ± 0.18b) at period 3 was significantly higher than the control group (1.67 ± 0.46a). In contrast, the number of the mares in the eating of the foaling group (1.17 ± 0.34b) at period 3 was significantly lower than the control group (3.33 ± 0.46a). In the frequent behaviors, the weaving of the foaling group was significantly higher than the control group, and looking at the belly of the foaling group was significantly lower than the control group. In period 2, defecation, weaving, and lowering the head of the foaling group were significantly higher than the control group, respectively. In period 3, sitting down and standing up, pawing, weaving, and lowering the head in the foaling group were also significantly higher than the control group. In conclusion, the behavior is significantly different in foaling periods, and the prediction of foaling may be feasible by the detection of the pre-foaling behaviors in the mares.

Cat Behavior Pattern Analysis and Disease Prediction System of Home CCTV Images using AI (AI를 이용한 홈CCTV 영상의 반려묘 행동 패턴 분석 및 질병 예측 시스템 연구)

  • Han, Su-yeon;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1266-1271
    • /
    • 2022
  • Cats have strong wildness so they have a characteristic of hiding diseases well. The disease may have already worsened when the guardian finds out that the cat has a disease. It will be of great help in treating the cat's disease if the owner can recognize the cat's polydipsia, polyuria, and frequent urination more quickly. In this paper, 1) Efficient version of DeepLabCut for pose estimation, 2) YOLO v4 for object detection, 3) LSTM is used for behavior prediction, and 4) BoT-SORT is used for object tracking running on an artificial intelligence device. Using artificial intelligence technology, it predicts the cat's next, polyuria and frequency of urination through the analysis of the cat's behavior pattern from the home CCTV video and the weight sensor of the water bowl. And, through analysis of cat behavior patterns, we propose an application that reports disease prediction and abnormal behavior to the guardian and delivers it to the guardian's mobile and the server system.

Mobility Support Scheme Based on Machine Learning in Industrial Wireless Sensor Network (산업용 무선 센서 네트워크에서의 기계학습 기반 이동성 지원 방안)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Jung, Kwansoo;Oh, Seungmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.256-264
    • /
    • 2020
  • Industrial Wireless Sensor Networks (IWSNs) is exploited to achieve various objectives such as improving productivity and reducing cost in the diversity of industrial application, and it has requirements such as low-delay and high reliability packet transmission. To accomplish the requirement, the network manager performs graph construction and resource allocation about network topology, and determines the transmission cycle and path of each node in advance. However, this network management scheme cannot treat mobile devices that cause continuous topology changes because graph reconstruction and resource reallocation should be performed as network topology changes. That is, despite the growing need of mobile devices in many industries, existing scheme cannot adequately respond to path failure caused by movement of mobile device and packet loss in the process of path recovery. To solve this problem, a network management scheme is required to prevent packet loss caused by mobile devices. Thus, we analyse the location and movement cycle of mobile devices over time using machine learning for predicting the mobility pattern. In the proposed scheme, the network manager could prevent the problems caused by mobile devices through performing graph construction and resource allocation for the predicted network topology based on the movement pattern. Performance evaluation results show a prediction rate of about 86% compared with actual movement pattern, and a higher packet delivery ratio and a lower resource share compared to existing scheme.

Interfacial Evaluation and Microfailure Sensing of Nanocomposites by Electrical Resistance Measurements and Wettability (전기저항측정법 및 젖음성을 이용한 나노복합재료의 미세파손 감지능 및 계면물성 평가)

  • Park, Joung-Man;Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.138-144
    • /
    • 2017
  • Damage sensing of polymer composite films consisting of poly(dicyclopentadiene) p-DCPD and carbon nanotube (CNT) was studied experimentally. Only up to 1st ring-opening polymerization occurred with the addition of CNT, which made the modified film electrically conductive, while interfering with polymerization. The interfacial adhesion of composite films with varying CNT concentration was evaluated by measuring the wettability using the static contact angle method. 0.5 wt% CNT/p-DCPD was determined to be the optimal condition via electrical dispersion method and tensile test. Dynamic fatigue test was conducted to evaluate the durability of the films by measuring the change in electrical resistance. For the initial three cycles, the change in electrical resistance pattern was similar to the tensile stress-strain curve. The CNT/p-DCPD film was attached to an epoxy matrix to demonstrate its utilization as a sensor for fracture behavior. At the onset of epoxy fracture, electrical resistance showed a drastic increase, which indicated adhesive fracture between sensor and matrix. It leads to prediction of crack and fracture of matrix.

Climatological Variability of Multisatellite-derived Sea Surface Temperature, Sea Ice Concentration, Chlorophyll-a in the Arctic Ocean (북극해에서 다중위성 자료를 이용한 표층수온, 해빙농도 및 클로로필의 장기 변화)

  • Kim, Hyuna;Park, Jinku;Kim, Hyun-Cheol;Son, Young Baek
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.901-915
    • /
    • 2017
  • Recently, global climate change has caused a catastrophic event in the Arctic Ocean, directly and indirectly. The air-sea interaction has caused the significant sea-ice reduction in the Arctic Ocean, and has been accelerating the Arctic warming. Many scientists are worried about the Arctic environment change, suggesting that many of anomalous events will produce direct or indirect biophysical effects on the Arctic. The aim of this study is to understand the inter-annual variability of the Arctic Ocean in wide-view using multi-satellite-derived measurements. Sea surface temperature (SST) and sea ice concentration (SIC) data were obtained from Optimum Interpolation Sea Surface Temperature (OISST) and ECMWF ERA-Interim, respectively. Chlorophyll-a concentration (CHL) was obtained from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Aqua sensor from MODerate resolution Imaging Spectroradiometer (MODIS-Aqua) sensor which has continuously observed since 1998. From 1998 to 2016 summer in the Arctic Ocean which was defined as regions over $60^{\circ}N$ in this study, there were three consequences that CHL increase ($0.15mg\;m^{-3}\;decade^{-1}$), SST warming ($0.43^{\circ}C\;decade^{-1}$) and SIC decrease ($-5.37%\;decade^{-1}$). While SST and SIC highly correlated each other (r = -0.76), a relationship between CHL and SIC was very low ($r={\pm}0.1$) because of data limitations. And a relationship between CHL and SST shows meaningful results ($r={\pm}0.66$) with regional differences.

Evaluation of Biomass and Nitrogen Nutrition of Tobacco under Sand Culture by Reflectance Indices of Ground-based Remote Sensors (지상원격측정 센서의 반사율 지표를 활용한 사경재배 연초의 생체량 및 질소영양 평가)

  • Kang, Seong-Soo;Jeong, Hyun-Cheol;Jeon, Sang-Ho;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.70-78
    • /
    • 2009
  • Remote sensing technique in agriculture can be used to identify chlorophyll content, biomass, and yield caused from N stress level. This study was conducted to evaluate biomass, N stress levels, and yield of tobacco (Nicotiana tabacum L.) under sand culture in a plastic film house using ground-based remote sensors. Nitrogen rates applied were 40, 60, 80, 100, 120, and 140 percent of N concentration in the Hoagland's nutrient solution. Sensor readings for reflectance indices were taken at 30, 35, 40, 45, 50 and 60 days after transplanting(DAT). Reflectance indices measured at 40th DAT were highly correlated with dry weight(DW) of tobacco leaves and N uptake by leaves. Especially, green normalized difference vegetation index(gNDVI) from spectroradiometer and aNDVI from Crop Circle passive sensor were able to explain 85% and 84% of DW variability and 85% and 92% of N uptake variability, respectively. All the reflectance indices measured at each sampling date during the growing season were significantly correlated with tobacco yield. Especially the gNDVI derived from spectroradiometer readings at the 40th DAT explained 72% of yield variability. N rates of tobacco were distinguished by sufficiency index calculated using the ratio of reflectance indices of stress to optimum plot of N treatment. Consequently results indicate that the reflectance indices by ground-based remote sensor can be used to predict tobacco yield and recommend the optimum application rate of N fertilizer for top dressing of tobacco.

A Study on the Design of Prediction Model for Safety Evaluation of Partial Discharge (부분 방전의 안전도 평가를 위한 예측 모델 설계)

  • Lee, Su-Il;Ko, Dae-Sik
    • Journal of Platform Technology
    • /
    • v.8 no.3
    • /
    • pp.10-21
    • /
    • 2020
  • Partial discharge occurs a lot in high-voltage power equipment such as switchgear, transformers, and switch gears. Partial discharge shortens the life of the insulator and causes insulation breakdown, resulting in large-scale damage such as a power outage. There are several types of partial discharge that occur inside the product and the surface. In this paper, we design a predictive model that can predict the pattern and probability of occurrence of partial discharge. In order to analyze the designed model, learning data for each type of partial discharge was collected through the UHF sensor by using a simulator that generates partial discharge. The predictive model designed in this paper was designed based on CNN during deep learning, and the model was verified through learning. To learn about the designed model, 5000 training data were created, and the form of training data was used as input data for the model by pre-processing the 3D raw data input from the UHF sensor as 2D data. As a result of the experiment, it was found that the accuracy of the model designed through learning has an accuracy of 0.9972. It was found that the accuracy of the proposed model was higher in the case of learning by making the data into a two-dimensional image and learning it in the form of a grayscale image.

  • PDF

Enhancement of durability of tall buildings by using deep-learning-based predictions of wind-induced pressure

  • K.R. Sri Preethaa;N. Yuvaraj;Gitanjali Wadhwa;Sujeen Song;Se-Woon Choi;Bubryur Kim
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.237-247
    • /
    • 2023
  • The emergence of high-rise buildings has necessitated frequent structural health monitoring and maintenance for safety reasons. Wind causes damage and structural changes on tall structures; thus, safe structures should be designed. The pressure developed on tall buildings has been utilized in previous research studies to assess the impacts of wind on structures. The wind tunnel test is a primary research method commonly used to quantify the aerodynamic characteristics of high-rise buildings. Wind pressure is measured by placing pressure sensor taps at different locations on tall buildings, and the collected data are used for analysis. However, sensors may malfunction and produce erroneous data; these data losses make it difficult to analyze aerodynamic properties. Therefore, it is essential to generate missing data relative to the original data obtained from neighboring pressure sensor taps at various intervals. This study proposes a deep learning-based, deep convolutional generative adversarial network (DCGAN) to restore missing data associated with faulty pressure sensors installed on high-rise buildings. The performance of the proposed DCGAN is validated by using a standard imputation model known as the generative adversarial imputation network (GAIN). The average mean-square error (AMSE) and average R-squared (ARSE) are used as performance metrics. The calculated ARSE values by DCGAN on the building model's front, backside, left, and right sides are 0.970, 0.972, 0.984 and 0.978, respectively. The AMSE produced by DCGAN on four sides of the building model is 0.008, 0.010, 0.015 and 0.014. The average standard deviation of the actual measures of the pressure sensors on four sides of the model were 0.1738, 0.1758, 0.2234 and 0.2278. The average standard deviation of the pressure values generated by the proposed DCGAN imputation model was closer to that of the measured actual with values of 0.1736,0.1746,0.2191, and 0.2239 on four sides, respectively. In comparison, the standard deviation of the values predicted by GAIN are 0.1726,0.1735,0.2161, and 0.2209, which is far from actual values. The results demonstrate that DCGAN model fits better for data imputation than the GAIN model with improved accuracy and fewer error rates. Additionally, the DCGAN is utilized to estimate the wind pressure in regions of buildings where no pressure sensor taps are available; the model yielded greater prediction accuracy than GAIN.