• Title/Summary/Keyword: sensor prediction

Search Result 567, Processing Time 0.031 seconds

A Study of CR-DuNN based on the LSTM and Du-CNN to Predict Infrared Target Feature and Classify Targets from the Clutters (LSTM 신경망과 Du-CNN을 융합한 적외선 방사특성 예측 및 표적과 클러터 구분을 위한 CR-DuNN 알고리듬 연구)

  • Lee, Ju-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.153-158
    • /
    • 2019
  • In this paper, we analyze the infrared feature for the small coast targets according to the surrounding environment for autonomous flight device equipped with an infrared imaging sensor and we propose Cross Duality of Neural Network (CR-DuNN) method which can classify the target and clutter in coastal environment. In coastal environment, there are various property according to diverse change of air temperature, sea temperature, deferent seasons. And small coast target have various infrared feature according to diverse change of environment. In this various environment, it is very important thing that we analyze and classify targets from the clutters to improve target detection accuracy. Thus, we propose infrared feature learning algorithm through LSTM neural network and also propose CR-DuNN algorithm that integrate LSTM prediction network with Du-CNN classification network to classify targets from the clutters.

Prediction of the stability of badminton net via numerical and mathematical modeling

  • Ke Cui;Jiao Yuan;Liang Liu
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • The present paper develops application of TSDT and MCST to analysis of a FG cylindrical micro-shell. The present model may be used as a sensor applicable in badminton net to detect contact. The radial and axial displacement components are described based on TSDT for more accurate analysis. The effect of small scales is accounted based on MCST. The solution is presented for a SS boundary condition to account the influence of various important parameters. A comparative analysis is presented to examine the effect of order of employed shear deformation theory on the axial and radial displacements.

The Monitoring System for Prediction Life-time and Visualization scheme of Coverage on WSN (무선 센서네트워크에서 coverage 가시화 기법 및 수명예측 모니터링 시스템)

  • Park, Sun-mi;Baek, Sung-jin;Yang, Su-Hyun;Kim, Kwon-Hwan;Song, Eun-Ha;Park, Doo-Soon;Jeong, Young-Sik
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.1718-1720
    • /
    • 2010
  • 저 전력 무선 센서 네트워크와 마이크로 센서를 결합하여 환경이나 상황을 인지하고 모니터링을 통해 수집된 정보를 사람에게 전하는 WSN(Wireless Sensor Network) 기술에 대한 많은 연구가 진행되고 있다. 본 논문은 바이너리 모델을 사용하여 단순 탐지 확률을 표현하는 기존 시뮬레이터들의 Coverage 표현의 한계를 극복하기 위해 Heat-map을 이용한 시뮬레이터를 개발했다. 이 시스템은 기존 바이너리 모델을 확장하고, GIS를 사용하여 지형정보를 함께 가시화함으로써 서비스 지형에 대한 센서 네트워크 구성뿐만 아니라 수명예측 메커니즘을 이용한 에너지 소모에 따른 노드의 수명을 가시화 한다.

Prediction of dairy cow mastitis with multi-sensor data using Multi-Layer Perceptron(MLP) (다중 센서 데이터와 다층 퍼셉트론을 활용한 젖소의 유방염 진단 예측)

  • Song, Hye-Won;Park, Gi-Cheol;Park, JaeHwa
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.788-791
    • /
    • 2020
  • 낙농업에서 경제적 손실을 불러일으키고 관찰 시간과 비용이 필요한 젖소의 유방염 관리는 중요하다. 그러나 지금까지의 연구는 유방염 진단에 초점을 맞추고 있고, 예측하려는 시도는 전무하다. 유방염에 걸린 개체는 며칠 동안 우유를 생산할 수 없기 때문에 낙농가에 막대한 피해를 준다. 따라서 젖소가 유방염에 걸려 증상이 나타나기 전에 미리 파악해 조처를 할 수 있도록 하는 것이 중요하다. 이에 본 연구는 유방염 예측을 위해 생체 데이터를 포함한 다중 센싱 데이터를 사용해 유방염 예측 모델을 개발하였다. 모델에 사용된 데이터는 충청남도의 농가에 설치된 로봇 착유기로 부터 수집하였으며, 일정 기간 동안의 다중 센싱 데이터를 바탕으로 다음 날의 유방염 여부를 예측한다. 많은 양의 비선형 데이터를 효과적으로 처리하기 위해 다층 퍼셉트론을 사용해 모델을 학습하였다. 그 결과, 81.6%의 예측 정확도를 보였으며 교차 검증을 통해 정확도뿐만 아니라 재현율까지 우수함을 확인할 수 있었다.

A Study on the Deep Learning-Based Defect Prediction Model Using Sensor Data of Semiconductor Equipment (반도체 설비 센서 데이터를 활용한 딥러닝 기반의 불량예측 모델에 관한 연구)

  • Ha, Seung-Jae;Lee, Won-Suk;Gu, Kyo-Yeon;Shin, Yong-Tae
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.459-462
    • /
    • 2021
  • 본 연구는 반도체 제조 공정중 발생하는 센서 데이터를 활용하여 딥러닝기반으로 불량을 예측하는 모델을 제안한다. 반도체 공장에서는 FDC((Fault Detection and Classification)라는 불량을 예측하는 시스템이 있지만, 공정의 복잡도가 높고 센서의 종류가 많아 공정 관리자가 모든 센서의 기준을 설정 및 관리하는데 한계가 있다. 이를 해결하기 위해 공정 설비의 센서 데이터를 딥러닝을 활용하여 학습시켜 센서 기준정보로 임계치를 제공하고, 가공중 발생하는 센서 데이터가 입력되면 정상 여부를 판정하는 모델을 제안한다.

Design of Sensor Data's Missing Value Handling Technique for Pet Healthcare Service based on Graph Attention Networks (펫 헬스 케어 서비스를 위한 GATs 기반 센서 데이터 처리 기법 설계)

  • Lee, Jihoon;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.463-465
    • /
    • 2021
  • 센서 데이터는 여러가지 원인으로 인해 데이터 결측치가 발생할 수 있으며, 결측치로 인한 데이터의 처리 방식에 따라 데이터 분석 결과가 다르게 해석될 수 있다. 이는 펫 헬스 케어 서비스에서 치명적인 문제로 연결될 수 있다. 따라서 본 논문에서는 펫 웨어러블 디바이스로부터 수집되는 다양한 센서 데이터의 결측치를 처리하기 위해 GATs(Graph Attention neTworks)와 LSTM(Long Short Term Memory)을 결합하여 활용한 데이터 결측치 처리 기법을 제안한다. 펫 웨어러블 디바이스의 센서 데이터가 서로 연관성을 가지고 있다는 점을 바탕으로 인접 노드의 Attention 수치와 Feature map을 도출한다. 이후 Prediction Layer 를 통해 결측치의 Feature 를 예측한다. 예측된 Feature 를 기반으로 Decoding 과정과 함께 결측치 보간이 이루어진다. 제안된 기법은 모델의 변형을 통해 이상치 탐지에도 활용할 수 있을 것으로 기대한다.

Spatiotemporal Impact Assessments of Highway Construction: Autonomous SWAT Modeling

  • Choi, Kunhee;Bae, Junseo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.294-298
    • /
    • 2015
  • In the United States, the completion of Construction Work Zone (CWZ) impact assessments for all federally-funded highway infrastructure improvement projects is mandated, yet it is regarded as a daunting task for state transportation agencies, due to a lack of standardized analytical methods for developing sounder Transportation Management Plans (TMPs). To circumvent these issues, this study aims to create a spatiotemporal modeling framework, dubbed "SWAT" (Spatiotemporal Work zone Assessment for TMPs). This study drew a total of 43,795 traffic sensor reading data collected from heavily trafficked highways in U.S. metropolitan areas. A multilevel-cluster-driven analysis characterized traffic patterns, while being verified using a measurement system analysis. An artificial neural networks model was created to predict potential 24/7 traffic demand automatically, and its predictive power was statistically validated. It is proposed that the predicted traffic patterns will be then incorporated into a what-if scenario analysis that evaluates the impact of numerous alternative construction plans. This study will yield a breakthrough in automating CWZ impact assessments with the first view of a systematic estimation method.

  • PDF

A Design of Behavioral Prediction through Diffusion Model-based Sensor Data Frequency Interpolation (Diffusion Model 기반 센서 데이터 주파수 보간을 통한 행동 예측 설계)

  • Jeong Hyeon Park;Jun Hyeok Go;Siung Kim;Nammee Moon
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.633-635
    • /
    • 2023
  • 센서 데이터를 예측 또는 분석하여 시스템을 제어하거나 모니터링할 수 있다. 센서 데이터를 이용한 예측의 신뢰성을 확보하기 위해서는 데이터의 적절한 빈도수가 중요하다. 이를 위해 본 논문에서는 Diffusion Model을 사용한 센서 데이터 주파수 보간을 통해 행동을 예측하는 방법을 제시하고자 한다. 주파수 보간은 반려동물 행동별 25hz 센서 데이터로 학습된 Diffusion Model을 사용한다. 학습된 Diffusion Model에 1hz 센서 데이터와 가우시안 노이즈를 결합한 데이터를 입력으로 사용해 센서데이터를 보간한다. 제안한 방법은 CNN-LSTM 모델 학습 후 예측 성능 비교를 통해 검증한다.

Research on Dispersion Prediction Technology and Integrated Monitoring Systems for Hazardous Substances in Industrial Complexes Based on AIoT Utilizing Digital Twin (디지털트윈을 활용한 AIoT 기반 산업단지 유해물질 확산예측 및 통합관제체계 연구)

  • Min Ho Son;Il Ryong Kweon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.484-499
    • /
    • 2024
  • Purpose: Recently, due to the aging of safety facilities in national industrial complexes, there has been an increase in the frequency and scale of safety accidents, highlighting the need for a shift toward a prevention-centered disaster management paradigm and the establishment of a digital safety network. In response, this study aims to provide an information system that supports more rapid and precise decision-making during disasters by utilizing digital twin-based integrated control technology to predict the spread of hazardous substances, trace the origin of accidents, and offer safe evacuation routes. Method: We considered various simulation results, such as surface diffusion, upper-level diffusion, and combined diffusion, based on the actual characteristics of hazardous substances and weather conditions, addressing the limitations of previous studies. Additionally, we designed an integrated management system to minimize the limitations of spatiotemporal monitoring by utilizing an IoT sensor-based backtracking model to predict leakage points of hazardous substances in spatiotemporal blind spots. Results: We selected two pilot companies in the Gumi Industrial Complex and installed IoT sensors. Then, we operated a living lab by establishing an integrated management system that provides services such as prediction of hazardous substance dispersion, traceback, AI-based leakage prediction, and evacuation information guidance, all based on digital twin technology within the industrial complex. Conclusion: Taking into account the limitations of previous research, we used digital twin-based AI analysis to predict hazardous chemical leaks, detect leakage accidents, and forecast three-dimensional compound dispersion and traceback diffusion.

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.