• Title/Summary/Keyword: sensor prediction

Search Result 567, Processing Time 0.028 seconds

Radar and Vision Sensor Fusion for Primary Vehicle Detection (레이더와 비전센서 융합을 통한 전방 차량 인식 알고리즘 개발)

  • Yang, Seung-Han;Song, Bong-Sob;Um, Jae-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.639-645
    • /
    • 2010
  • This paper presents the sensor fusion algorithm that recognizes a primary vehicle by fusing radar and monocular vision data. In general, most of commercial radars may lose tracking of the primary vehicle, i.e., the closest preceding vehicle in the same lane, when it stops or goes with other preceding vehicles in the adjacent lane with similar velocity and range. In order to improve the performance degradation of radar, vehicle detection information from vision sensor and path prediction predicted by ego vehicle sensors will be combined for target classification. Then, the target classification will work with probabilistic association filters to track a primary vehicle. Finally the performance of the proposed sensor fusion algorithm is validated using field test data on highway.

Planning of Safe and Efficient Local Path based on Path Prediction Using a RGB-D Sensor (RGB-D센서 기반의 경로 예측을 적용한 안전하고 효율적인 지역경로 계획)

  • Moon, Ji-Young;Chae, Hee-Won;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • Obstacle avoidance is one of the most important parts of autonomous mobile robot. In this study, we proposed safe and efficient local path planning of robot for obstacle avoidance. The proposed method detects and tracks obstacles using the 3D depth information of an RGB-D sensor for path prediction. Based on the tracked information of obstacles, the paths of the obstacles are predicted with probability circle-based spatial search (PCSS) method and Gaussian modeling is performed to reduce uncertainty and to create the cost function of caution. The possibility of collision with the robot is considered through the predicted path of the obstacles, and a local path is generated. This enables safe and efficient navigation of the robot. The results in various experiments show that the proposed method enables robots to navigate safely and effectively.

An Experimental Study on the Prediction of Concrete Compressive Strength by the Maturity Method Using Embedded Wireless Temperature and Humidity Sensor (콘크리트 매립형 무선 온습도 센서 기반 적산온도법을 이용한 콘크리트 압축강도 예측에 관한 실험적 연구)

  • Mun, Dong-Hwan;Jang, Hyun-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.94-95
    • /
    • 2018
  • Prediction of compressive strength of concrete by Maturity Method is applied in construction site. However, due to the use of wired type high-priced equipment, economic efficiency and workability are falling. In this study, a newly developed concrete embedded wireless sensor is used to perform a mock-up test. Next, the concrete compressive strength of the Maturity Method is predicted using Saul and Plowman's function as measured temperature data. The predicted concrete strength at the beginning of the age was the actual strength and stiffness, but the error rate was less than 1% at 28th day.

  • PDF

A Study on the Risk Prediction System Using System Support Load Monitoring Sensor (시스템 서포트 하중 모니터링 센서를 이용한 위험 예측시스템 연구)

  • Shim, Hak-Bo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.186-187
    • /
    • 2020
  • Damage to temporary facilities and structural members caused by excessive loads in the field continue to occur. If the load can be monitored in advance, the risk can be prevented. In this study, a load cell sensor is installed under the system support, and load data is wirelessly transmitted through a Bluetooth AP(wireless). Risk prediction system is proposed through an construction alarm when an abnormal load occurs through real-time multi-point monitoring by sensor location.

  • PDF

Optimal Sensor Placement for Improved Prediction Accuracy of Structural Responses in Model Test of Multi-Linked Floating Offshore Systems Using Genetic Algorithms (다중연결 해양부유체의 모형시험 구조응답 예측정확도 향상을 위한 유전알고리즘을 이용한 센서배치 최적화)

  • Kichan Sim;Kangsu Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • Structural health monitoring for ships and offshore structures is important in various aspects. Ships and offshore structures are continuously exposed to various environmental conditions, such as waves, wind, and currents. In the event of an accident, immense economic losses, environmental pollution, and safety problems can occur, so it is necessary to detect structural damage or defects early. In this study, structural response data of multi-linked floating offshore structures under various wave load conditions was calculated by performing fluid-structure coupled analysis. Furthermore, the order reduction method with distortion base mode was applied to the structures for predicting the structural response by using the results of numerical analysis. The distortion base mode order reduction method can predict the structural response of a desired area with high accuracy, but prediction performance is affected by sensor arrangement. Optimization based on a genetic algorithm was performed to search for optimal sensor arrangement and improve the prediction performance of the distortion base mode-based reduced-order model. Consequently, a sensor arrangement that predicted the structural response with an error of about 84.0% less than the initial sensor arrangement was derived based on the root mean squared error, which is a prediction performance evaluation index. The computational cost was reduced by about 8 times compared to evaluating the prediction performance of reduced-order models for a total of 43,758 sensor arrangement combinations. and the expected performance was overturned to approximately 84.0% based on sensor placement, including the largest square root error.

A Study on the Implementation of Intelligent Diagnosis System for Motor Pump (모터펌프의 지능형 진단시스템 구현에 관한 연구)

  • Ahn, Jae Hyun;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.87-91
    • /
    • 2019
  • The diagnosis of the failure for the existing electrical facilities was based on regular preventive maintenance, but this preventive maintenance was limited in preventing a lot of cost loss and sudden system failure. To overcome these shortcomings, fault prediction and diagnostic techniques are critical to increasing system reliability by monitoring electrical installations in real time and detecting abnormal conditions in the facility early. As the performance and quality deterioration problem occurs frequently due to the increase in the number of users of the motor pump, the purpose is to build an intelligent control system that can control the motor pump to maximize the performance and to improve the quality and reliability. To this end, a vibration sensor, temperature sensor, pressure sensor, and low water level sensor are used to detect vibrations, temperatures, pressures, and low water levels that can occur in the motor pump, and to build a system that can identify and diagnose information to users in real time.

LSTM-based Model for Effective Sensor Filtering in Sensor Registry System (센서 레지스트리 시스템에서 효율적인 센서 필터링을 위한 LSTM 기반 모델)

  • Chen, Haotian;Jung, Hyunjun;Lee, Sukhoon;On, Byung-Won;Jeong, Dongwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.12-14
    • /
    • 2021
  • A sensor registry system (SRS) provides semantic metadata about a sensor based on location information of a mobile device in order to solve a problem of interoperability between a sensor and a device. However, if the GPS of the mobile device is incorrectly received, the SRS receives incorrect sensor information and has a problem in that it cannot connect with the sensor. This paper proposes a dual collaboration strategy based on geographical embedding and LSTM-based path prediction to improve the probability of successful requests between mobile devices and sensors to address this problem and evaluate with the Monte Carlo approach. Through experiments, it was shown that the proposed method can compensate for location abnormalities and is an effective multicasting mechanism.

  • PDF

Fatigue Life Prediction of Sensor Pod for Aircraft Considering Aircraft Loads (비행체 하중을 고려한 항공기용 센서 포드의 피로수명 예측)

  • Cho, Jae Myung;Jang, Joon;Choi, Woo Chun;Bae, Jong In
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.32-39
    • /
    • 2019
  • Sensor pods mounted on the exterior of the aircraft used for tactical missions should have a fatigue life based on the expected load spectrum during operation. For mission equipment such as the sensor pod, the frequency fatigue life prediction method which applies the dynamic vibration environment condition is preferred due to the efficiency of the analysis. In this paper, a fatigue life prediction method in the frequency domain where stress due to static and dynamic loads is synthesized based on the actual flight load spectrum is proposed. After comparison with the existing analysis method, the fatigue life of the proposed analysis method was predicted conservatively. The proposed sensor pods satisfy the requirements of the fatigue life.

Supervised-learning-based algorithm for color image compression

  • Liu, Xue-Dong;Wang, Meng-Yue;Sa, Ji-Ming
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.258-271
    • /
    • 2020
  • A correlation exists between luminance samples and chrominance samples of a color image. It is beneficial to exploit such interchannel redundancy for color image compression. We propose an algorithm that predicts chrominance components Cb and Cr from the luminance component Y. The prediction model is trained by supervised learning with Laplacian-regularized least squares to minimize the total prediction error. Kernel principal component analysis mapping, which reduces computational complexity, is implemented on the same point set at both the encoder and decoder to ensure that predictions are identical at both the ends without signaling extra location information. In addition, chrominance subsampling and entropy coding for model parameters are adopted to further reduce the bit rate. Finally, luminance information and model parameters are stored for image reconstruction. Experimental results show the performance superiority of the proposed algorithm over its predecessor and JPEG, and even over JPEG-XR. The compensation version with the chrominance difference of the proposed algorithm performs close to and even better than JPEG2000 in some cases.

Design and Implementation of the Slope-Crack Prediction System by Using Wireless Sensor Networks (무선 센서 네트워크를 이용한 상시 사면 균열 예측시스템의 설계 및 구현)

  • Lim, Hwa-Jung;Tscha, Yeong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.186-192
    • /
    • 2009
  • With the proliferation of ubiquitous computing we have witnessed the wide application of many wireless sensor networks into various areas because of easy installations and low-cost merits. The commercially available equipments for monitoring and predicting cracks in the mountain regions are still burden for us in terms of the installation complexity and the cost. Alternatively we in this paper design and implement a pilot slop-crack monitoring and prediction system which is based on low-cost commercial sensor networks. The proposed system is easy to install on cliffs, slopes, rocks, and banks and may minimize the destruction of the original geographical forms. Expected is that its installation and maintenance costs may reduce to the half of those of existing systems.