• Title/Summary/Keyword: sensor prediction

Search Result 567, Processing Time 0.03 seconds

Monitoring of Recycling Treatment System for Piggery Slurry Using Neural Networks (신경회로망을 이용한 순환식 돈분처리 시스템의 모니터링)

  • Sohn, Jun-Il;Lee, Min-Ho;Choi, Jung-Hea;Koh, Sung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.127-133
    • /
    • 2000
  • We propose a novel monitoring system for a recycling piggery slurry treatment system through neural networks. Here we tried to model treatment process for each tank(influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) in the system based on population densities of heterotrophic and lactic acid bacteria. Principle component analysis(PCA) was first applied to identify a relation between input(microbial densities and parameters for the treatment) and output, and then multilayer neural networks were employed to model the treatment process for each tank. PCA filtration of input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of input. Neural networks independently trained for each treatment tank and their subsequent combinatorial data analysis allowed a successful prediction of the treatment system for at least two days.

  • PDF

A Study on the Application of Ground Displacement Sensor by Rock Blasting Test (암반 발파시험을 통한 지중변위센서의 적용성 연구)

  • Lee, Seungjoo;Jeong, Woocheol;Lee, Eungbeom;Suk, Songhee;Lee, Kangil;Kim, Yongseong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.71-78
    • /
    • 2022
  • In this study, the applicability of underground displacement sensors was considered through rock blasting tests to develop a relatively inexpensive and efficient slope failure prediction system that can quickly detect the risk of slope failure in advance and issue predictions and warnings with accurate judgment. In the blasting experiment, the sensor located close to the blasting source showed a large displacement due to crushing inside the rock and the sensor located away from the blasting source showed a relatively small strain. This study confirmed that the wired and wireless type underground displacement sensor system can be applied to measure the behavior of the rock slope, and it can be used as a basic data for establishing an early warning system to predict slope failure.

Improvement of turbid water prediction accuracy using sensor-based monitoring data in Imha Dam reservoir (센서 기반 모니터링 자료를 활용한 임하댐 저수지 탁수 예측 정확도 개선)

  • Kim, Jongmin;Lee, Sang Ung;Kwon, Siyoon;Chung, Se Woong;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.931-939
    • /
    • 2022
  • In Korea, about two-thirds of the precipitation is concentrated in the summer season, so the problem of turbidity in the summer flood season varies from year to year. Concentrated rainfall due to abnormal rainfall and extreme weather is on the rise. The inflow of turbidity caused a sudden increase in turbidity in the water, causing a problem of turbidity in the dam reservoir. In particular, in Korea, where rivers and dam reservoirs are used for most of the annual average water consumption, if turbidity problems are prolonged, social and environmental problems such as agriculture, industry, and aquatic ecosystems in downstream areas will occur. In order to cope with such turbidity prediction, research on turbidity modeling is being actively conducted. Flow rate, water temperature, and SS data are required to model turbid water. To this end, the national measurement network measures turbidity by measuring SS in rivers and dam reservoirs, but there is a limitation in that the data resolution is low due to insufficient facilities. However, there is an unmeasured period depending on each dam and weather conditions. As a sensor for measuring turbidity, there are Optical Backscatter Sensor (OBS) and YSI, and a sensor for measuring SS uses equipment such as Laser In-Situ Scattering and Transmissometry (LISST). However, in the case of such a high-tech sensor, there is a limit due to the stability of the equipment. Therefore, there is an unmeasured period through analysis based on the acquired flow rate, water temperature, SS, and turbidity data, so it is necessary to develop a relational expression to calculate the SS used for the input data. In this study, the AEM3D model used in the Water Resources Corporation SURIAN system was used to improve the accuracy of prediction of turbidity through the turbidity-SS relationship developed based on the measurement data near the dam outlet.

Cat Behavior Pattern Analysis and Disease Prediction System of Home CCTV Images using AI (AI를 이용한 홈CCTV 영상의 반려묘 행동 패턴 분석 및 질병 예측 시스템 연구)

  • Han, Su-yeon;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.165-167
    • /
    • 2022
  • The proportion of cat cats among companion animals has been increasing at an average annual rate of 25.4% since 2012. Cats have strong wildness compared to dogs, so they have a characteristic of hiding diseases well. Therefore, when the guardian finds out that the cat has a disease, the disease may have already worsened. Symptoms such as anorexia (eating avoidance), vomiting, diarrhea, polydipsia, and polyuria in cats are some of the symptoms that appear in cat diseases such as diabetes, hyperthyroidism, renal failure, and panleukopenia. It will be of great help in treating the cat's disease if the owner can recognize the cat's polydipsia (drinking a lot of water), polyuria (a large amount of urine), and frequent urination (urinating frequently) more quickly. In this paper, 1) Efficient version of DeepLabCut for posture prediction running on an artificial intelligence server, 2) yolov4 for object detection, and 3) LSTM are used for behavior prediction. Using artificial intelligence technology, it predicts the cat's next, polyuria and frequency of urination through the analysis of the cat's behavior pattern from the home CCTV video and the weight sensor of the water bowl. And, through analysis of cat behavior patterns, we propose an application that reports disease prediction and abnormal behavior to the guardian and delivers it to the guardian's mobile and the main server system.

  • PDF

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.

Sampling and Calibration Requirements for Optical Reflectance Soil Property Sensors for Korean Paddy Soils (광반사를 이용한 한국 논 토양 특성센서를 위한 샘플링과 캘리브레이션 요구조건)

  • Lee, Kyou-Seung;Lee, Dong-Hoon;Jung, In-Kyu;Chung, Sun-Ok;Sudduth, K.A.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.260-268
    • /
    • 2008
  • Optical diffuse reflectance sensing has potential for rapid and reliable on-site estimation of soil properties. For good results, proper calibration to measured soil properties is required. One issue is whether it is necessary to develop calibrations using samples from the specific area or areas (e.g., field, soil series) in which the sensor will be applied, or whether a general "factory" calibration is sufficient. A further question is if specific calibration is required, how many sample points are needed. In this study, these issues were addressed using data from 42 paddy fields representing 14 distinct soil series accounting for 74% of the total Korean paddy field area. Partial least squares (PLS) regression was used to develop calibrations between soil properties and reflectance spectra. Model evaluation was based on coefficient of determination ($R^2$) root mean square error of prediction (RMSEP), and RPD, the ratio of standard deviation to RMSEP. When sample data from a soil series were included in the calibration stage (full information calibration), RPD values of prediction models were increased by 0.03 to 3.32, compared with results from calibration models not including data from the test soil series (calibration without site-specific information). Higher $R^2$ values were also obtained in most cases. Including some samples from the test soil series (hybrid calibration) generally increased RPD rapidly up to a certain number of sample points. A large portion of the potential improvement could be obtained by adding about 8 to 22 points, depending on the soil properties to be estimated, where the numbers were 10 to 18 for pH, 18-22 for EC, and 8 to 22 for total C. These results provide guidance on sampling and calibration requirements for NIR soil property estimation.

Calorie Expenditure Prediction Model of Elderly Living Alone using Motion Sensors for LBS Applications (LBS 응용을 위해 움직임 센서를 이용한 독거노인의 칼로리 소모 예측 모델)

  • Jung, Kyung-Kwon;Kim, Yong-Joong
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • This paper presents calorie expenditure prediction model of daily activity of elderly living alone for LBS(Location Based Service) applications. The proposed method is to describe the daily activity patterns of older adult using PIR (Passive InfraRed) motion sensors and to examine the relationships between physical activity and calorie expenditure. The developed motion detecting system is composed of a sensing system and a server system. The motion detecting system is a set of wireless sensor nodes which has PIR sensor to detect a motion of elder. Each sensing node sends its detection signal to a home gateway via wireless link. The home gateway stores the received signals into a remote database. The server system is composed of a database server and a web server, which provides web-based monitoring system to caregivers for more effective services. The experiment results show the adaptability and feasibility of the calorie expenditure model.

Monitoring and Prediction of Appliances Electricity Usage Using Neural Network (신경회로망을 이용한 가전기기 전기 사용량 모니터링 및 예측)

  • Jung, Kyung-Kwon;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.137-146
    • /
    • 2011
  • In order to support increased consumer awareness regarding energy consumption, we present new ways of monitoring and predicting with energy in electric appliances. The proposed system is a design of a common electrical power outlet called smart plug that measures the amount of current passing through current sensor at 0.5 second. To acquire data for training and testing the proposed neural network, weather parameters used include average temperature of day, min and max temperature, humidity, and sunshine hour as input data, and power consumption as target data from smart plug. Using the experimental data for training, the neural network model based on Back-Propagation algorithm was developed. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the proposed neural network model can predict the power consumption quite well with correlation coefficient was 0.9965, and prediction mean square error was 0.02033.

A Prediction Scheme for Power Apparatus using Artificial Neural Networks (인공신경망을 이용한 수전설비 고장 예측 방법)

  • Ki, Tae-Seok;Lee, Sang-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.201-207
    • /
    • 2017
  • Failure of the power apparatus causes many inconveniences and problems due to power outage in all places using power such as industry and home. The main causes of faults in the Power Apparatus are aging, natural disasters such as typhoons and earthquakes, and animals. At present, the long high temperature status is monitored only by the assumption that a fault occurs when the temperature of the power apparatus becomes higher. Therefore, it is difficult to cope with the failure of the power apparatus at the right time. In this paper, we propose a power apparatus monitoring system as an efficient countermeasure against general faults except for faults caused by sudden natural disasters. The proposed monitoring system monitors the power apparatus in real time by attaching a thermal sensor, collects the monitored data, and predicts the failure using the accumulated information through learning using the artificial neural network. Through the learning and experimentation of artificial neural network, it is shown that the proposed method is efficient.