• Title/Summary/Keyword: sensor prediction

Search Result 567, Processing Time 0.035 seconds

An Energy-Balancing Technique using Spatial Autocorrelation for Wireless Sensor Networks (공간적 자기상관성을 이용한 무선 센서 네트워크 에너지 균등화 기법)

  • Jeong, Hyo-nam;Hwang, Jun
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.33-39
    • /
    • 2016
  • With recent advances in sensor technology, CMOS-based semiconductor devices and networking protocol, the areas for application of wireless sensor networks greatly expanded and diversified. Such diversification of uses for wireless sensor networks creates a multitude of beneficial possibilities for several industries. In the application of wireless sensor networks for monitoring systems' data transmission process from the sensor node to the sink node, transmission through multi-hop paths have been used. Also mobile sink techniques have been applied. However, high energy costs, unbalanced energy consumption of nodes and time gaps between the measured data values and the actual value have created a need for advancement. Therefore, this thesis proposes a new model which alleviates these problems. To reduce the communication costs due to frequent data exchange, a State Prediction Model has been developed to predict the situation of the peripheral node using a geographic autocorrelation of sensor nodes constituting the wireless sensor networks. Also, a Risk Analysis Model has developed to quickly alert the monitoring system of any fatal abnormalities when they occur. Simulation results have shown, in the case of applying the State Prediction Model, errors were smaller than otherwise. When the Risk Analysis Model is applied, the data transfer latency was reduced. The results of this study are expected to be utilized in any efficient communication method for wireless sensor network monitoring systems where all nodes are able to identify their geographic location.

New Filtering Method for Reducing Registration Error of Distributed Sensors (분산된 센서들의 Registration 오차를 줄이기 위한 새로운 필터링 방법)

  • Kim, Yong-Shik;Lee, Jae-Hoon;Do, Hyun-Min;Kim, Bong-Keun;Tanikawa, Tamio;Ohba, Kohtaro;Lee, Ghang;Yun, Seok-Heon
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.176-185
    • /
    • 2008
  • In this paper, new filtering method for sensor registration is provided to estimate and correct error of registration parameters in multiple sensor environments. Sensor registration is based on filtering method to estimate registration parameters in multiple sensor environments. Accuracy of sensor registration can increase performance of data fusion method selected. Due to various error sources, the sensor registration has registration errors recognized as multiple objects even though multiple sensors are tracking one object. In order to estimate the error parameter, new nonlinear information filtering method is developed using minimum mean square error estimation. Instead of linearization of nonlinear function like an extended Kalman filter, information estimation through unscented prediction is used. The proposed method enables to reduce estimation error without a computation of the Jacobian matrix in case that measurement dimension is large. A computer simulation is carried out to evaluate the proposed filtering method with an extended Kalman filter.

  • PDF

Instruction-Level Power Estimator for Sensor Networks

  • Joe, Hyun-Woo;Park, Jae-Bok;Lim, Chae-Deok;Woo, Duk-Kyun;Kim, Hyung-Shin
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.47-58
    • /
    • 2008
  • In sensor networks, analyzing power consumption before actual deployment is crucial for maximizing service lifetime. This paper proposes an instruction-level power estimator (IPEN) for sensor networks. IPEN is an accurate and fine grain power estimation tool, using an instruction-level simulator. It is independent of the operating system, so many different kinds of sensor node software can be simulated for estimation. We have developed the power model of a Micaz-compatible mote. The power consumption of the ATmega128L microcontroller is modeled with the base energy cost and the instruction overheads. The CC2420 communication component and other peripherals are modeled according to their operation states. The energy consumption estimation module profiles peripheral accesses and function calls while an application is running. IPEN has shown excellent power estimation accuracy, with less than 5% estimation error compared to real sensor network implementation. With IPEN's high precision instruction-level energy prediction, users can accurately estimate a sensor network's energy consumption and achieve fine-grained optimization of their software.

  • PDF

An Efficient Outdoor Localization Method Using Multi-Sensor Fusion for Car-Like Robots (다중 센서 융합을 사용한 자동차형 로봇의 효율적인 실외 지역 위치 추정 방법)

  • Bae, Sang-Hoon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.995-1005
    • /
    • 2011
  • An efficient outdoor local localization method is suggested using multi-sensor fusion with MU-EKF (Multi-Update Extended Kalman Filter) for car-like mobile robots. In outdoor environments, where mobile robots are used for explorations or military services, accurate localization with multiple sensors is indispensable. In this paper, multi-sensor fusion outdoor local localization algorithm is proposed, which fuses sensor data from LRF (Laser Range Finder), Encoder, and GPS. First, encoder data is used for the prediction stage of MU-EKF. Then the LRF data obtained by scanning the environment is used to extract objects, and estimates the robot position and orientation by mapping with map objects, as the first update stage of MU-EKF. This estimation is finally fused with GPS as the second update stage of MU-EKF. This MU-EKF algorithm can also fuse more than three sensor data efficiently even with different sensor data sampling periods, and ensures high accuracy in localization. The validity of the proposed algorithm is revealed via experiments.

동적 비선형 신호의 온라인 모델링

  • 한정희;왕지남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.371-376
    • /
    • 1994
  • This paper presents an on-line modeling method approach for the machine condition. the machine condition is continuously monitored with a sensor such as, a vibration, a current, an acoustic emission (AE) sensor. In this study, neural network modeling by radial basis function is designed for analysis a prediction error. An on-line learning algorithm is designed using the RLS(recursive least square) estimation and the existing clustering method of Kohonen neural network. Experimental results show that the proposed RBNN modeling is suitable for predicting simulated data.

  • PDF

SENSOR DATA MINING TECHNIQUES AND MIDDLEWARE STRUCTURE FOR USN ENVIRONMENT

  • Jin, Cheng-Hao;Lee, Yong-Mi;Kim, Hi-Seok;Pok, Gou-Chol;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.353-356
    • /
    • 2007
  • With advances in sensor technology, current researches on the pertinent techniques are actively directed toward the way which enables the USN computing service. For many applications using sensor networks, the incoming data are by nature characterized as high-speed, continuous, real-time and infinite. Due to such uniqueness of sensor data characteristics, for some instances a finite-sized buffer may not accommodate the entire incoming data, which leads to inevitable loss of data, and requirement for fast processing makes it impossible to conduct a thorough investigation of data. In addition to the potential problem of loss of data, incoming data in its raw form may exhibit high degree of complexity which evades simple query or alerting services for capturing and extracting useful information. Furthermore, as traditional mining techniques are developed to handle fixed, static historical data, they are not useful and directly applicable for analyzing the sensor data. In this paper, (1) describe how three mining techniques (sensor data outlier analysis, sensor pattern analysis, and sensor data prediction analysis) are appropriate for the USN middleware structure, with their application to the stream data in ocean environment. (2) Another proposal is a middleware structure based on USN environment adaptive to above mining techniques. This middleware structure includes sensor nodes, sensor network common interface, sensor data processor, sensor query processor, database, sensor data mining engine, user interface and so on.

  • PDF

A LOSSLESS CODING SCHEME FOR BAYER COLOR FILTER ARRAY IMAGES USING BLOCK-ADAPTIVE PREDICTION

  • Abe, Toshiyuki;Matsuday, Ichiro;Itohy, Susumu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.838-841
    • /
    • 2009
  • This paper proposes a novel lossless coding scheme for Bayer color filter array (CFA) images which are generally used as internal data of color digital cameras having a single image sensor. The scheme employs a block-adaptive prediction method to exploit spatial and spectral correlations in local areas containing different color signals. In order to allow adaptive prediction suitable for the respective color signals, four kinds of linear predictors which correspond to 2 ${\times}$ 2 samples of Bayer CFA are simultaneously switched block-by-block. Experimental results show that the proposed scheme outperforms other state-of-the-art lossless coding schemes in terms of coding efficiency for Bayer CFA images.

  • PDF

Prediction and Detection of Tool Wear and Fracture in Machining (절삭시 발생하는 공구마멸의 예측 및 파괴의 검출에 관한 연구)

  • 김영태;고정한;박철우;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.116-125
    • /
    • 1998
  • In this paper, main target is to select parameters for prediction of tool wear and detection of tool fracture. The research about choosing parameter for prediction of tool wear is done by using force ratios. Also current sensor, tool-dynamometer, and accelerometer are used for researching detection method of tool fracture. Experiment is done using Taguchi's method in medium machining conditions. Parameter which is best for prediction of tool wear and detection of tool fracture by deviation analysis is selected. In this paper, tool wear means flank wear.

  • PDF

Development of a Weather Prediction Device Using Transformer Models and IoT Techniques

  • Iyapo Kamoru Olarewaju;Kyung Ki Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.164-168
    • /
    • 2023
  • Accurate and reliable weather forecasts for temperature, relative humidity, and precipitation using advanced transformer models and IoT are essential in various fields related to global climate change. We propose a novel weather prediction device that integrates state-of-the-art transformer models and IoT techniques to improve prediction accuracy and real-time processing. The proposed system demonstrated high reliability and performance, offering valuable insights for industries and sectors that rely on accurate weather information, including agriculture, transportation, and emergency response planning. The integration of transformer models with the IoT signifies a substantial advancement in weather and climate modeling.

A Comparative Study on Collision Detection Algorithms based on Joint Torque Sensor using Machine Learning (기계학습을 이용한 Joint Torque Sensor 기반의 충돌 감지 알고리즘 비교 연구)

  • Jo, Seonghyeon;Kwon, Wookyong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.169-176
    • /
    • 2020
  • This paper studied the collision detection of robot manipulators for safe collaboration in human-robot interaction. Based on sensor-based collision detection, external torque is detached from subtracting robot dynamics. To detect collision using joint torque sensor data, a comparative study was conducted using data-based machine learning algorithm. Data was collected from the actual 3 degree-of-freedom (DOF) robot manipulator, and the data was labeled by threshold and handwork. Using support vector machine (SVM), decision tree and k-nearest neighbors KNN method, we derive the optimal parameters of each algorithm and compare the collision classification performance. The simulation results are analyzed for each method, and we confirmed that by an optimal collision status detection model with high prediction accuracy.