• 제목/요약/키워드: sensor prediction

검색결과 567건 처리시간 0.029초

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

  • Park, Chang-Mok
    • International journal of advanced smart convergence
    • /
    • 제7권1호
    • /
    • pp.24-32
    • /
    • 2018
  • An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.

Sensor Density for Full-View Problem in Heterogeneous Deployed Camera Sensor Networks

  • Liu, Zhimin;Jiang, Guiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4492-4507
    • /
    • 2021
  • In camera sensor networks (CSNs), in order to better identify the point, full-view problem requires capture any facing direction of target (point or intruder), and its coverage prediction and sensor density issues are more complicated. At present, a lot of research supposes that a large number of homogeneous camera sensors are randomly distributed in a bounded square monitoring region to obtain full-view rate which is close to 1. In this paper, we deduce the sensor density prediction model in heterogeneous deployed CSNs with arbitrary full-view rate. Aiming to reduce the influence of boundary effect, we introduce the concepts of expanded monitoring region and maximum detection area. Besides, in order to verify the performance of the proposed sensor density model, we carried out different scenarios in simulation experiments to verify the theoretical results. The simulation results indicate that the proposed model can effectively predict the sensor density with arbitrary full-view rate.

무선센서 네트워크를 이용한 산사태 모니터링 기초기술 연구 (Landslide prediction system by wireless sensor network)

  • 김형우
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2007년도 학술대회
    • /
    • pp.191-195
    • /
    • 2007
  • Recently, landslides frequently happen at a natural slope during period of intensive rainfall. With rapidly increasing population of steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is developed. The system is focused to debris flows which happen frequently during periods of intensive rainfall at steep slopes in Kangwondo. This system is based on the wireless sensor network that is composed of sensor nodes, gateway, and server system. Sensor nodes that are composed of sensing part and communication part are newly developed to detect sensitive ground movement. Sensing part is designed to measure tilt angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15. I) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of laboratory tests is performed at a small-scale earth slope supplying rainfall by artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope failure starts. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs, and can be applied to ubiquitous computing city (U-City) that is characterized by disaster free.

  • PDF

입력 영상의 방사학적 불일치 보정이 다중 센서 고해상도 위성영상의 시공간 융합에 미치는 영향 (Effect of Correcting Radiometric Inconsistency between Input Images on Spatio-temporal Fusion of Multi-sensor High-resolution Satellite Images)

  • 박소연;나상일;박노욱
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.999-1011
    • /
    • 2021
  • 다중 센서 영상으로부터 공간 및 시간해상도가 모두 높은 영상을 예측하는 시공간 융합에서 다중 센서 영상의 방사학적 불일치는 예측 성능에 영향을 미칠 수 있다. 이 연구에서는 다중 센서 위성영상의 서로 다른 분광학적 특성을 보정하는 방사보정이 융합 결과에 미치는 영향을 분석하였다. 두 농경지에서 얻어진 Sentinel-2, PlanetScope 및 RapidEye 영상을 이용한 사례연구를 통해 상대 방사보정의 효과를 정량적으로 분석하였다. 사례연구 결과, 상대 방사보정을 적용한 다중 센서 영상을 사용하였을 때 융합의 예측 정확도가 향상되었다. 특히 입력 자료 간 상관성이 낮은 경우에 상대 방사보정에 의한 예측 정확도 향상이 두드러졌다. 분광 특성의 차이를 보이는 다중 센서 자료를 서로 유사하게 변환함으로써 예측 성능이 향상된 것으로 보인다. 이 결과를 통해 상대 방사보정은 상관성이 낮은 다중 센서 위성영상의 시공간 융합에서 예측 능력을 향상시키기 위해 필요할 것으로 판단된다.

Collective Prediction exploiting Spatio Temporal correlation (CoPeST) for energy efficient wireless sensor networks

  • ARUNRAJA, Muruganantham;MALATHI, Veluchamy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2488-2511
    • /
    • 2015
  • Data redundancy has high impact on Wireless Sensor Network's (WSN) performance and reliability. Spatial and temporal similarity is an inherent property of sensory data. By reducing this spatio-temporal data redundancy, substantial amount of nodal energy and bandwidth can be conserved. Most of the data gathering approaches use either temporal correlation or spatial correlation to minimize data redundancy. In Collective Prediction exploiting Spatio Temporal correlation (CoPeST), we exploit both the spatial and temporal correlation between sensory data. In the proposed work, the spatial redundancy of sensor data is reduced by similarity based sub clustering, where closely correlated sensor nodes are represented by a single representative node. The temporal redundancy is reduced by model based prediction approach, where only a subset of sensor data is transmitted and the rest is predicted. The proposed work reduces substantial amount of energy expensive communication, while maintaining the data within user define error threshold. Being a distributed approach, the proposed work is highly scalable. The work achieves up to 65% data reduction in a periodical data gathering system with an error tolerance of 0.6℃ on collected data.

Distributed Fusion Moving Average Prediction for Linear Stochastic Systems

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.88-93
    • /
    • 2019
  • This paper is concerned with distributed fusion moving average prediction for continuous-time linear stochastic systems with multiple sensors. A distributed fusion with the weighted sum structure is applied to the optimal local moving average predictors. The distributed fusion prediction algorithm represents the optimal linear fusion by weighting matrices under the minimum mean square criterion. The derivation of equations for error cross-covariances between the local predictors is the key of this paper. Example demonstrates effectiveness of the distributed fusion moving average predictor.

무선센서 네트워크에 의한 경사면 계측 실용화 연구 (Landslide monitoring using wireless sensor network)

  • 김형우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1324-1331
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes and gateway are deployed with Microstrain G-Link system. Five wireless sensor nodes and gateway are installed at the man-made slope to detect landslide. It is found that the acceleration data of each sensor node can be obtained via wireless sensor networks. Additionally, thresholds to determine whether the slope will be stable or not are proposed using finite element analysis. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

센서 정보의 안정적인 이용을 위한 경로 예측 기반 센서 레지스트리 시스템 (A Path Prediction-Based Sensor Registry System for Stable Use of Sensor Information)

  • 정동원;두미경
    • 정보과학회 논문지
    • /
    • 제42권2호
    • /
    • pp.255-263
    • /
    • 2015
  • 센서 레지스트리 시스템은 이기종 센서 네트워크 환경에서 센서 데이터의 즉시적 활용 및 끊김 없는 해석을 위해 개발되었다. 그러나 기존 센서 레지스트리 시스템은 불안정한 네트워크 상황에서 센서 데이터 해석을 위한 정보를 제공하지 못하며, 이로 인해 센서 데이터의 손실, 처리 결과의 부정확성, 서비스 품질 저하 등의 문제를 야기한다. 이 논문에서는 소프트웨어 관점에서 이러한 문제점을 해결할 수 있는 방안을 제시한다. 사용자의 이동 경로를 예측하여 사전에 센서 정보를 이동 단말기에 제공함으로써 불완전한 네트워크 접속 시점에 안정적으로 센서 정보를 활용할 수 있는 확장된 센서 레지스트리 시스템을 제안하고 실험 및 평가 결과를 보인다. 이 논문에서 제안한 확장된 센서 레지스트리 시스템은 센서 정보의 안정적 활용성 증가와 더불어 센서 기반 서비스 품질을 향상시킨다.

사면방재를 위한 무선센서 네트워크 기술연구 (Landslide Detection using Wireless Sensor Networks)

  • 김형우;이범교
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.369-372
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes comprising a sensing part and a communication part are developed to detect ground movement. Sensing part is designed to measure inclination angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15.1) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of experimental studies was performed at a small-scale earth slope equipped with an artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope starts to move. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

센서 네트워크에서 에너지 효율적 목표 추적 방법의 비교 (The Comparisons Between Energy Effective Target Tracking Methods in Wireless Sensor Network)

  • 오승현
    • 한국멀티미디어학회논문지
    • /
    • 제10권1호
    • /
    • pp.139-146
    • /
    • 2007
  • Wireless Sensor network를 이용하여 객체를 추적하는 방법에 대해 많은 연구가 진행되어 왔다. 본 연구는 객체 추적에 사용되는 방법에 따라 에너지의 양과 추적의 정확도 사이에 존재하는 상관관계를 관찰하고, 움직임 예측 방법에서 에너지 소비량을 최소화할 수 있음을 확인하였다. 추적에 사용되는 에너지는 센서노드가 객체를 감지하기 위해 소모하는 것이며, 추적의 정확도는 객체의 실제위치와 감지에 의해 계산된 위치의 차이이다. 몇 가지 추적방법과 파라미터의 조절에 따라 추적의 정확도와 소비되는 에너지의 양에 차이가 있고, 움직임 예측 알고리즘을 사용할 때 가장 좋은 에너지 효율을 얻을 수 있었다. 또한 가속도를 고려한 움직임 예측 알고리즘의 개선을 통해 더 나은 정확도와 에너지 효율을 기록하였다. 시뮬레이션 결과 움직임 예측 알고리즘에서 목표의 미래위치에 따라 노드를 활성화시키는 범위는 예측 알고리즘이 정확할 경우 센서 노드의 감지범위 정도로 제한하는 것이 유리함을 알 수 있었다.

  • PDF