• Title/Summary/Keyword: sensor prediction

Search Result 567, Processing Time 0.024 seconds

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

  • Park, Chang-Mok
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.

Sensor Density for Full-View Problem in Heterogeneous Deployed Camera Sensor Networks

  • Liu, Zhimin;Jiang, Guiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4492-4507
    • /
    • 2021
  • In camera sensor networks (CSNs), in order to better identify the point, full-view problem requires capture any facing direction of target (point or intruder), and its coverage prediction and sensor density issues are more complicated. At present, a lot of research supposes that a large number of homogeneous camera sensors are randomly distributed in a bounded square monitoring region to obtain full-view rate which is close to 1. In this paper, we deduce the sensor density prediction model in heterogeneous deployed CSNs with arbitrary full-view rate. Aiming to reduce the influence of boundary effect, we introduce the concepts of expanded monitoring region and maximum detection area. Besides, in order to verify the performance of the proposed sensor density model, we carried out different scenarios in simulation experiments to verify the theoretical results. The simulation results indicate that the proposed model can effectively predict the sensor density with arbitrary full-view rate.

Landslide prediction system by wireless sensor network (무선센서 네트워크를 이용한 산사태 모니터링 기초기술 연구)

  • Kim, Hyung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.191-195
    • /
    • 2007
  • Recently, landslides frequently happen at a natural slope during period of intensive rainfall. With rapidly increasing population of steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is developed. The system is focused to debris flows which happen frequently during periods of intensive rainfall at steep slopes in Kangwondo. This system is based on the wireless sensor network that is composed of sensor nodes, gateway, and server system. Sensor nodes that are composed of sensing part and communication part are newly developed to detect sensitive ground movement. Sensing part is designed to measure tilt angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15. I) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of laboratory tests is performed at a small-scale earth slope supplying rainfall by artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope failure starts. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs, and can be applied to ubiquitous computing city (U-City) that is characterized by disaster free.

  • PDF

Effect of Correcting Radiometric Inconsistency between Input Images on Spatio-temporal Fusion of Multi-sensor High-resolution Satellite Images (입력 영상의 방사학적 불일치 보정이 다중 센서 고해상도 위성영상의 시공간 융합에 미치는 영향)

  • Park, Soyeon;Na, Sang-il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.999-1011
    • /
    • 2021
  • In spatio-temporal fusion aiming at predicting images with both high spatial and temporal resolutionsfrom multi-sensor images, the radiometric inconsistency between input multi-sensor images may affect prediction performance. This study investigates the effect of radiometric correction, which compensate different spectral responses of multi-sensor satellite images, on the spatio-temporal fusion results. The effect of relative radiometric correction of input images was quantitatively analyzed through the case studies using Sentinel-2, PlanetScope, and RapidEye images obtained from two croplands. Prediction performance was improved when radiometrically corrected multi-sensor images were used asinput. In particular, the improvement in prediction performance wassubstantial when the correlation between input images was relatively low. Prediction performance could be improved by transforming multi-sensor images with different spectral responses into images with similar spectral responses and high correlation. These results indicate that radiometric correction is required to improve prediction performance in spatio-temporal fusion of multi-sensor satellite images with low correlation.

Collective Prediction exploiting Spatio Temporal correlation (CoPeST) for energy efficient wireless sensor networks

  • ARUNRAJA, Muruganantham;MALATHI, Veluchamy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2488-2511
    • /
    • 2015
  • Data redundancy has high impact on Wireless Sensor Network's (WSN) performance and reliability. Spatial and temporal similarity is an inherent property of sensory data. By reducing this spatio-temporal data redundancy, substantial amount of nodal energy and bandwidth can be conserved. Most of the data gathering approaches use either temporal correlation or spatial correlation to minimize data redundancy. In Collective Prediction exploiting Spatio Temporal correlation (CoPeST), we exploit both the spatial and temporal correlation between sensory data. In the proposed work, the spatial redundancy of sensor data is reduced by similarity based sub clustering, where closely correlated sensor nodes are represented by a single representative node. The temporal redundancy is reduced by model based prediction approach, where only a subset of sensor data is transmitted and the rest is predicted. The proposed work reduces substantial amount of energy expensive communication, while maintaining the data within user define error threshold. Being a distributed approach, the proposed work is highly scalable. The work achieves up to 65% data reduction in a periodical data gathering system with an error tolerance of 0.6℃ on collected data.

Distributed Fusion Moving Average Prediction for Linear Stochastic Systems

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.88-93
    • /
    • 2019
  • This paper is concerned with distributed fusion moving average prediction for continuous-time linear stochastic systems with multiple sensors. A distributed fusion with the weighted sum structure is applied to the optimal local moving average predictors. The distributed fusion prediction algorithm represents the optimal linear fusion by weighting matrices under the minimum mean square criterion. The derivation of equations for error cross-covariances between the local predictors is the key of this paper. Example demonstrates effectiveness of the distributed fusion moving average predictor.

Landslide monitoring using wireless sensor network (무선센서 네트워크에 의한 경사면 계측 실용화 연구)

  • Kim, Hyung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1324-1331
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes and gateway are deployed with Microstrain G-Link system. Five wireless sensor nodes and gateway are installed at the man-made slope to detect landslide. It is found that the acceleration data of each sensor node can be obtained via wireless sensor networks. Additionally, thresholds to determine whether the slope will be stable or not are proposed using finite element analysis. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

A Path Prediction-Based Sensor Registry System for Stable Use of Sensor Information (센서 정보의 안정적인 이용을 위한 경로 예측 기반 센서 레지스트리 시스템)

  • Jeong, Dongwon;Doo, Migyeong
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.255-263
    • /
    • 2015
  • The sensor registry system has been developed for instant use and seamless interpretation of sensor data in a heterogeneous sensor network environment. However, the existing sensor registry system cannot provide information for interpretation of the sensor data in situations in which the network is unstable. This limitation causes several problems such as sensor data loss, inaccuracy of processed results, and low service quality. A method to resolve such problems in the aspect of software is presented herein. In other words, an extended sensor registry system is proposed to enable the stable use of sensor information, even under conditions of unstable network connection, by providing sensor information with a mobile device in advance through the user path prediction. The results of experiments and evaluation are also presented. The extended sensor registry system proposed in this paper enhances the stable usability of sensor information as well as improves the quality of sensor-based services.

Landslide Detection using Wireless Sensor Networks (사면방재를 위한 무선센서 네트워크 기술연구)

  • Kim, Hyung-Woo;Lee, Bum-Gyo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.369-372
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes comprising a sensing part and a communication part are developed to detect ground movement. Sensing part is designed to measure inclination angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15.1) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of experimental studies was performed at a small-scale earth slope equipped with an artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope starts to move. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

The Comparisons Between Energy Effective Target Tracking Methods in Wireless Sensor Network (센서 네트워크에서 에너지 효율적 목표 추적 방법의 비교)

  • Oh, Seung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.1
    • /
    • pp.139-146
    • /
    • 2007
  • Many researches had been gone about method to track moving object using wireless sensor network. We examined tradeoffs that exist between quantity of energy and correctness of tracking, and we confirmed that can get more energy sayings through improved motion prediction method. The consumed energy in the tracking is used by sensor node for sensing the object, and tracking correctness is a differ once of actual object position from calculated value by sensing. Some tracking methods and controlling parameters causes a variation of tracking correctness and energy consuming, we can get best energy effectiveness by motion prediction algorithm. Furthermore, we get better tracking quality and energy effectiveness through using a motion prediction algorithm that consider acceleration. By the simulation, we know that if we use an accurate motion prediction algorithm, node activation range that is used for target's predicted position should be restricted to sensing range of sensor is better.

  • PDF