• Title/Summary/Keyword: sensor optimal selection

Search Result 72, Processing Time 0.029 seconds

Estimation of Vibration Field of a Cylindrical Structure Derived by Optimal Sensor Placement Methods (센서최적배치 기법에 의한 원통형 구조물의 진동장 예측)

  • Jung, Byung-Kyoo;Jeong, Weui-Bong;Cho, Dae-Seung;Kim, Kookhyun;Kang, Myeonghwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.381-389
    • /
    • 2014
  • This study is concerned with the estimation of vibration-field of a cylindrical structure by modal expansion method(MEM). MEM is a technique that identifies modal participation factors using some of vibration signals and natural modes of the structure: The selection of sensor locations has a big influence on predicted vibration results. Therefore, this paper deals with four optimal sensor placement( OSP) methods, EFI, EFI-DPR, EVP, AutoMAC, for the estimation of vibration field. It also finds optimal sensor locations of the cylindrical structure by each OSP method and then performs MEMs. Predicted vibration results compared with reference ones obtained by forced response analysis. The standard deviations of errors between reference and predicted results were also calculated. It is utilized to select the most suitable OSP method for estimation of vibration field of the cylindrical structure.

Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm

  • Amini, Amir;Mohammadimehr, Mehdi;Faraji, Alireza
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.721-733
    • /
    • 2020
  • The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

Optimal position selection of sensors and transducers for noise control of 3D (3차원 공간의 소음 제어를 위한 센서 및 트랜스듀서 최적위치 선정)

  • Lee, Hong-Won;Seo, Sung-Dae;Nam, Hyun-Do
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.107-110
    • /
    • 2003
  • In this paper, the optimal position selection of error sensors and transducers to attenuate interior noise from outside noise sources using active control techniques is presented. To get an optimal control characteristics in adaptive noise control systems, it is necessary to optimize the positions of sensors and transducers. A new type of simulated annealing method has been proposed as searching technique to find optimal transducers and sensors positions in which the sum of the squared pressures at sensor position in an enclosure can be best minimized. Computer simulations and experiments have been performed to show the effectiveness of the proposed method.

  • PDF

A Study on Acoustic Odometry Estimation based on the Image Similarity using Forward-looking Sonar (이미지 쌍의 유사도를 고려한 Acoustic Odometry 정확도 향상 연구)

  • Eunchul Yoon;Byeongjin Kim;Hangil Joe
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.313-319
    • /
    • 2023
  • In this study, we propose a method to improve the accuracy of acoustic odometry using optimal frame interval selection for Fourier-based image registration. The accuracy of acoustic odometry is related to the phase correlation result of image pairs obtained from the forward-looking sonar (FLS). Phase correlation failure is caused by spurious peaks and high-similarity image pairs that can be prevented by optimal frame interval selection. We proposed a method of selecting the optimal frame interval by analyzing the factors affecting phase correlation. Acoustic odometry error was reduced by selecting the optimal frame interval. The proposed method was verified using field data.

Optimal LEACH Protocol with Improved Bat Algorithm in Wireless Sensor Networks

  • Cai, Xingjuan;Sun, Youqiang;Cui, Zhihua;Zhang, Wensheng;Chen, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2469-2490
    • /
    • 2019
  • A low-energy adaptive clustering hierarchy (LEACH) protocol is a low-power adaptive cluster routing protocol which was proposed by MIT's Chandrakasan for sensor networks. In the LEACH protocol, the selection mode of cluster-head nodes is a random selection of cycles, which may result in uneven distribution of nodal energy and reduce the lifetime of the entire network. Hence, we propose a new selection method to enhance the lifetime of network, in this selection function, the energy consumed between nodes in the clusters and the power consumed by the transfer between the cluster head and the base station are considered at the same time. Meanwhile, the improved FTBA algorithm integrating the curve strategy is proposed to enhance local and global search capabilities. Then we combine the improved BA with LEACH, and use the intelligent algorithm to select the cluster head. Experiment results show that the improved BA has stronger optimization ability than other optimization algorithms, which the method we proposed (FTBA-TC-LEACH) is superior than the LEACH and LEACH with standard BA (SBA-LEACH). The FTBA-TC-LEACH can obviously reduce network energy consumption and enhance the lifetime of wireless sensor networks (WSNs).

Self Organization of Sensor Networks for Energy-Efficient Border Coverage

  • Watfa, Mohamed K.;Commuri, Sesh
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.57-71
    • /
    • 2009
  • Networking together hundreds or thousands of cheap sensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. As sensor nodes are typically battery operated, it is important to efficiently use the limited energy of the nodes to extend the lifetime of the wireless sensor network (WSN). One of the fundamental issues in WSNs is the coverage problem. In this paper, the border coverage problem in WSNs is rigorously analyzed. Most existing results related to the coverage problem in wireless sensor networks focused on planar networks; however, three dimensional (3D) modeling of the sensor network would reflect more accurately real-life situations. Unlike previous works in this area, we provide distributed algorithms that allow the selection and activation of an optimal border cover for both 2D and 3D regions of interest. We also provide self-healing algorithms as an optimization to our border coverage algorithms which allow the sensor network to adaptively reconfigure and repair itself in order to improve its own performance. Border coverage is crucial for optimizing sensor placement for intrusion detection and a number of other practical applications.

A new method for optimal selection of sensor location on a high-rise building using simplified finite element model

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.671-684
    • /
    • 2011
  • Deciding on an optimal sensor placement (OSP) is a common problem encountered in many engineering applications and is also a critical issue in the construction and implementation of an effective structural health monitoring (SHM) system. The present study focuses with techniques for selecting optimal sensor locations in a sensor network designed to monitor the health condition of Dalian World Trade Building which is the tallest in the northeast of China. Since the number of degree-of-freedom (DOF) of the building structure is too large, multi-modes should be selected to describe the dynamic behavior of a structural system with sufficient accuracy to allow its health state to be determined effectively. However, it's difficult to accurately distinguish the translational and rotational modes for the flexible structures with closely spaced modes by the modal participation mass ratios. In this paper, a new method of the OSP that computing the mode shape matrix in the weak axis of structure by the simplified multi-DOF system was presented based on the equivalent rigidity parameter identification method. The initial sensor assignment was obtained by the QR-factorization of the structural mode shape matrix. Taking the maximum off-diagonal element of the modal assurance criterion (MAC) matrix as a target function, one more sensor was added each time until the maximum off-diagonal element of the MAC reaches the threshold. Considering the economic factors, the final plan of sensor placement was determined. The numerical example demonstrated the feasibility and effectiveness of the proposed scheme.

Optimal Routing Path Selection Algorithm in Ad-hoc Wireless Sensor Network (Ad-hoc 센서 네트워크를 위한 최적 라우팅 경로 설정 알고리즘)

  • Jang In-Hun;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.736-741
    • /
    • 2005
  • The highly popular algorithm to determine routing path for the multi-hopping wireless sensor network is DSR(Dynamic Source Routing), which is one of the Demand-Driven way to makes the route only when there is a request for sending data. However, because DSR attaches the route's record on the sending packet, the bigger number of sensor node is, the heavier packet in DSR becomes. In this paper, we try to propose the new optimal routing path selecting algorithm which does not make the size of packet bigger by using proper routing table even though the number of sensor node increases, and we try to show our algorithm is more stable and reliable because it is based on the cost function considering some network resources of each sensor node such as power consumption, mobility, traffic in network, distance(hop) between source and destination.

Analysis of Improved Convergence and Energy Efficiency on Detecting Node Selection Problem by Using Parallel Genetic Algorithm (병렬유전자알고리즘을 이용한 탐지노드 선정문제의 에너지 효율성과 수렴성 향상에 관한 해석)

  • Seong, Ki-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.953-959
    • /
    • 2012
  • There are a number of idle nodes in sensor networks, these can act as detector nodes for anomaly detection in the network. For detecting node selection problem modeled as optimization equation, the conventional method using centralized genetic algorithm was evaluated. In this paper, a method to improve the convergence of the optimal value, while improving energy efficiency as a method of considering the characteristics of the network topology using parallel genetic algorithm is proposed. Through simulation, the proposed method compared with the conventional approaches to the convergence of the optimal value was improved and was found to be energy efficient.