• Title/Summary/Keyword: sensor noise

Search Result 1,786, Processing Time 0.034 seconds

Estimation of Vibration Field of a Cylindrical Structure Derived by Optimal Sensor Placement Methods (센서최적배치 기법에 의한 원통형 구조물의 진동장 예측)

  • Jung, Byung-Kyoo;Jeong, Weui-Bong;Cho, Dae-Seung;Kim, Kookhyun;Kang, Myeonghwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.381-389
    • /
    • 2014
  • This study is concerned with the estimation of vibration-field of a cylindrical structure by modal expansion method(MEM). MEM is a technique that identifies modal participation factors using some of vibration signals and natural modes of the structure: The selection of sensor locations has a big influence on predicted vibration results. Therefore, this paper deals with four optimal sensor placement( OSP) methods, EFI, EFI-DPR, EVP, AutoMAC, for the estimation of vibration field. It also finds optimal sensor locations of the cylindrical structure by each OSP method and then performs MEMs. Predicted vibration results compared with reference ones obtained by forced response analysis. The standard deviations of errors between reference and predicted results were also calculated. It is utilized to select the most suitable OSP method for estimation of vibration field of the cylindrical structure.

Vibration Measurement of an Automobile Exhaust System in Operation (구동중인 자동차 배기계의 진동 특성 측정)

  • Kim, Sung-Kook;Lee, Jong-Nam;Han, Soon-Woo;Chung, Tae-Jin;Lee, Sin-Young;Jang, Gang-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.235-240
    • /
    • 2007
  • In this work, the operational deflection shape(ODS) of an automobile exhaust system is measured by using a recently-developed magnetic sensor. The magnetic sensor is composed of a solenoid and two pairs of permanent magnets generating an antisymmetric magnetic field in the lateral direction inside the solenoid. Lateral movement of a ferromagnetic pipe inside the magnetic field of the suggested sensor induces an electromotive force in the solenoid corresponding to the lateral velocity of the pipe. Due to the simplicity and non-contact characteristics of the magnetic sensor, dynamic behaviors of the structures operating under high temperature such as an exhaust pipe can be efficiently observed. It is shown that the lateral ODS of an exhaust system can be successfully measured by the suggested sensors.

An approach for optimal sensor placement based on principal component analysis and sensitivity analysis under uncertainty conditions

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.59-80
    • /
    • 2022
  • In the present study, the objective is to detect the structural damages using the responses obtained from the sensors at the optimal location under uncertainty conditions. Reducing the error rate in damage detection process due to responses' noise is an important goal in this study. In the proposed algorithm for optimal sensor placement, the noise of responses recorded from the sensors is initially reduced using the principal component analysis. Afterward, the optimal sensor placement is obtained by the damage detection equation based sensitivity analysis. The sensors are placed on degrees of freedom corresponding to the minimum error rate in structural damage detection through this procedure. The efficiency of the proposed method is studied on a truss bridge, a space dome, a double-layer grid as well as a three-story experimental frame structure and the results are compared. Moreover, the performance of the suggested method is compared with three other algorithms of Average Driving Point Residue (ADPR), Effective Independence (EI) method, and a mass weighting version of EI. In the examples, young's modulus, density, and cross-sectional areas of the elements are considered as uncertainty parameters. Ultimately, the results have demonstrated that the presented algorithm under uncertainty conditions represents a high accuracy to obtain the optimal sensor placement in the structures.

Highly-sensitive Magnetic Sensor using the Amplitude-Modulation (진폭변조를 이용한 고감도 자기센서)

  • 이상훈;남태철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.90-95
    • /
    • 1995
  • This paper describes the highly-sensitive Si magnetic sensor using the amplitude modulation in order to real ice the integrated magnetic sensor which to sensor a weak magnetic field. Generally, the most important two parameters in Hall IC which degrade the ability of magnetic detection are the variation of offset according to the variation of temperature and the noise of amplifiers. In this paper, we use a Hall element and compensator to reduce the offset and the nouse of amplifiers by Using amplititude modulation method.

  • PDF

A study on DR image restoration using dual sensor (이중센서를 이용한 DR 영상 개선에 관한 연구)

  • 백승권;이태수;민병구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.725-728
    • /
    • 1988
  • Image restoration technique using dual sensor is presented in this paper. Digital Radiography image (1024xlO24) is obtained by conventional resolution sensor. We also obtain local DR image data by high resolution sensor. Two dimensional maximum entropy power spectrum estimation (2-D ME PSE) is applied to low resolution image and high resolution image for the purpose of the power spectrum estimation of each image. A class of linear algebraic restoration filter, parametric projection filter (PPF), is derived from the power spectrums of each image. It is shown that the noise energy may be considerably reduced through the PPF.

  • PDF

Character Tracking for Using an Accelerometer Sensor (Accelerometer Sensor를 이용한 문자 추적에 관한 고찰)

  • 여영호;배명수;손수국;유진용
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.43-46
    • /
    • 2002
  • This paper is about the Micro Accelerometer Sensor that collect the human's writing patterns so as to process its signals. Finally, we pursue the accuracy of digital data about the writing pattern and hope to discuss the possibility of the Micro Accelerometer Sensor Besides, we researched the compensation of signal distortion due to tiIt and analyzed the noise error in order to improve its accuracy.

  • PDF

Information entropy based algorithm of sensor placement optimization for structural damage detection

  • Ye, S.Q.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.443-458
    • /
    • 2012
  • The structural health monitoring (SHM) benchmark study on optimal sensor placement problem for the instrumented Canton Tower has been launched. It follows the success of the modal identification and model updating for the Canton Tower in the previous benchmark study, and focuses on the optimal placement of vibration sensors (accelerometers) in the interest of bettering the SHM system. In this paper, the sensor placement problem for the Canton Tower and the benchmark model for this study are first detailed. Then an information entropy based sensor placement method with the purpose of damage detection is proposed and applied to the benchmark problem. The procedure that will be implemented for structural damage detection using the data obtained from the optimal sensor placement strategy is introduced and the information on structural damage is specified. The information entropy based method is applied to measure the uncertainties throughout the damage detection process with the use of the obtained data. Accordingly, a multi-objective optimal problem in terms of sensor placement is formulated. The optimal solution is determined as the one that provides equally most informative data for all objectives, and thus the data obtained is most informative for structural damage detection. To validate the effectiveness of the optimally determined sensor placement, damage detection is performed on different damage scenarios of the benchmark model using the noise-free and noise-corrupted measured information, respectively. The results show that in comparison with the existing in-service sensor deployment on the structure, the optimally determined one is capable of further enhancing the capability of damage detection.

Direct Velocity Feedback for Tip Vibration Control of a Cantilever Beam with a Non-collocated Sensor and Actuator Pair (비동위치화된 센서와 액추에이터를 이용한 외팔보의 끝단 진동에 대한 직접속도 피드백제어)

  • Lee, Young-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.109-114
    • /
    • 2004
  • This paper presents a theoretical and experimental study of a non-collocated pair of piezopolymer PVDF sensor and piezoceramic PZT actuator, which are bonded on a cantilever beam, in order to suppress unwanted vibration at the tip of the beam. The PZT actuator patch was bonded near the clamped part and the PVDF sensor, which was triangularly shaped, was bonded on the other part of the beam. This is because the triangular PVDF sensor is known that it can detect the tip velocity of a cantilever beam. Because the arrangement of the sensor and actuator pair is not collocated and overlapped each other, the pair can avoid so called 'the in-plane coupling'. The test beam is made of aluminum with the dimension of $200\times20\times2mm$, and the two PZT5H actuators are both $20\times20\times1mm$ and bonded on the beam out-of-phase, and the PVDF sensor is $178mm\times6mm\times52{\mu}m$. Before control, the sensor-actuator frequency response function is confirmed to have a nice phase response without accumulation in a reasonable frequency range of up to 5000 Hz. Both the DVFB and displacement feedback strategies made the error signal from the tip velocity (or displacement) sensor is transmitted to a power amplifier to operate the PZT actuator (secondary source). Both the control methods attenuate the magnitude of the first two resonances in the error spectrum of about 6-7 dB.

  • PDF

Analysis of Vibration Noise Spectrum in Motor-Driven Power Steering System (Motor-Driven Power Steering 시스템의 진동 소음 스펙트럼 분석)

  • Park, Han Young;Kim, Jin Young;Kang, Joonhee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.126-131
    • /
    • 2018
  • Unlike the hydraulic power steering (HPS) system, which operates by the high pressure of a fluid obtained from the engine power, the motor-driven power steering (MDPS) system uses an electric motor to steer the wheel without consuming engine power. To steer the wheel with an electric motor, a worm wheel and a worm gear rotating between the steering shaft and motor are required. Any imperfection during the construction of an MDPS system or in a composing part creates noise and vibration, which can be sensed by a driver. To solve the noise and vibration problems, each part must be designed to not resonate with other parts. In this work, we developed the measurement and analysis systems to obtain the noise and the vibration of an automobile MDPS system. A signal analyzer was equipped with a 96 kHz, 24-bit ADC and a 150 MHz digital signal processor. The predetermined threshold value of the vibration in the MDPS system was used to determine the pass/fail, and the results were displayed on the screen. Our system can be used in the fabrication line to swiftly determine any imperfections in the MDPS system construction.

A Helmet-type MEG System with $1^{st}$ order SQUID Gradiometer Located in Vacuum (진공조에 위치한 1차 SQUID 미분계를 이용한 헬멧형 뇌자도 장치의 제작)

  • Yu, K.K.;Kim, K.;Lee, Y.H.;Kim, J.M.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.78-82
    • /
    • 2009
  • We have fabricated a helmet type magnetoencephalogrphy(MEG) with a $1^{st}$ order gradiometer in vacuum to improve the signal-to-noise ratio(SNR) and the boil-off rate of liquid helium(LHe). The axial type first-order gradiometer was fabricated with a double relaxation oscillation SQUID(DROS) sensor which was directly connected with a pickup coil. The neck space of LHe dewar was made to be smaller than that of a conventional dewar, but the LHe boil-off ratio appeared to increase. To reduce the temperature of low Tc SQUID sensor and pickup coil to 9 K, a metal shield made of, such as copper, brass or aluminum, have been usually used for thermal transmission. But the metal shield exhibited high thermal noise and eddy current fluctuation. We quantified the thermal noise and the eddy current fluctuation of metal. In this experiment, we used the bobbin which was made of an alumina to wind Nb superconductive wire for pickup coil and the average noise of coil-in-vacuum type MEG system was $3.5fT/Hz^{1/2}$. Finally, we measured the auditory evoked signal to prove the reliability of coil-in-vacuum type MEG system.

  • PDF