• 제목/요약/키워드: sensor geometry

검색결과 236건 처리시간 0.024초

PC-NC 를 위한 기상측정 모듈 개발 (Development of OMM Module for PC-NC System)

  • 윤길상;권양훈;정석우;조명우
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.144-152
    • /
    • 2003
  • The purpose of this paper is to establish an effective inspection system by using OMM (On-Machine Measurement) system based PC-NC. This system can reduce manufacturing lead time because part is inspected each process. Inspection process planning is accomplished by determining the number of measuring points, their location, measuring path using fuzzy logic, Hammersley method, traveling salesperson problem. Inspection with contacted sensor improve quality as inspection feature is developed to based machining feature. This method is tested by simulation and experiment, then analyzed measuring data and geometry tolerance.

Impact Localization for a Composite Plate Using the Spatial Focusing Properties of Advanced Signal Processing Techniques

  • Jeong, Hyunjo;Cho, Sungjong
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.703-710
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a composite plate is presented in this paper. The method employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the spatial focusing efficiency of both approaches at the impact position and its surroundings through impact experiments. The imaging results of impact localization show that the impact location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring knowledge of anisotropic material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testing of plate-like structures.

광 마이크로폰 설계를 위한 경사 절단된 멀티모드 광섬유의 조도분포 해석 (Irradiance Distribution Analysis of Inclined-cut Multi-mode Optical Fiber for Optical Microphone Design)

  • 김경우;제우성;권휴상
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.693-698
    • /
    • 2008
  • For designing intensity modulation type optical microphone, the irradiance distribution which can be applied to inclined-cut geometrical configuration is suggested. The model is important in analysis of response characteristics f3r intensity modulation type optical microphone. To overcome low sensitivity problem in intensity modulation type optical microphone, inclined-cut optical fiber is considered here. Based on optical geometry, the inclined-cut optical fiber sensor is designed and fabricated. The experiments are carried out to evaluate sensor performance.

  • PDF

비젼 센서를 이용한 디버링 로봇의 구현 (A Realization of Deburring Robot using Vision Sensor)

  • 배준영;주윤명;김준업;이상룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.466-469
    • /
    • 2002
  • Burr is a projected part of finished workpiece. It is unavoidable and undesirable by-product of most metal cutting or shearing process. Also, it must be removed to improve the fit of machined parts, safety of workers, and the effectiveness of finishing operation. But deburring process is one of manufacturing processes that have net been successfully automated, so deburring automation is strongly needed. This paper focused on developing a basic algorithm to find edge of workpiece and match two different image data for deburring automation which includes automatic recognition of parts, generation of deburring tool paths and edge/corner finding ability by analyzing the DXF drawing file which contains information of part geometry. As an algorithm for corner finding, SUSAN method was chosen. It makes good performance in finding edge and corner in suitable time. And this paper suggested a simple algorithm to find matching point between CCD image and drawing file.

  • PDF

Characterization of Fiber Pull-out in Orthogonal Cutting of Glass fiber Reinforced Plastics

  • Park, Gi-Heung
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2003년도 추계 학술논문발표회 논문집
    • /
    • pp.113-117
    • /
    • 2003
  • The reliability of machined fiber reinforced composites (FRC) in high strength applications and the safety in using these components are often critically dependent upon the quality of surface produced by machining since the surface layer may drastically affect the strength and chemical resistance of the material [1,2,3,4]. Current study will discuss the characterization of fiber pull-out in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the fiber pull-out and the AR coefficients is examined first and effects of fiber orientation, cutting parameters and tool geometry on the fiber pull-out are also discussed.

  • PDF

Crack source location by acoustic emission monitoring method in RC strips during in-situ load test

  • Shokri, Tala;Nanni, Antonio
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.155-171
    • /
    • 2014
  • Various monitoring techniques are now available for structural health monitoring and Acoustic Emission (AE) is one of them. One of the major advantages of the AE technique is its capability to locate active cracks in structural members. AE crack locating approaches are affected by the signal attenuation and dispersion of elastic waves due to inhomogeneity and geometry of reinforced concrete (RC) members. In this paper, a novel technique is described based on signal processing and sensor arrangement to process multisensory AE data generated by the onset and propagation of cracks and is validated with experimental results from an in-situ load test. Considering the sources of uncertainty in the AE crack location process, a methodology is proposed to capture and locate events generated by cracks. In particular, the relationship between AE events and load is analyzed, and the feasibility of using the AE technique to evaluate the cracking behavior of two RC slab strips during loading to failure is studied.

Sensitivity of Hot Film Flow Meter in Four Stroke Gasoline Engine

  • Lee, Gangyoung;Lee, Cha--Myung;Park, Simsoo;Youngjin Cho
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.286-293
    • /
    • 2004
  • The air fuel ratios of current gasoline engines are almost controlled by several air flow meters. When CVVT (Continuous Variable Valve Timing) is applied to a gasoline engine for higher engine performance, the MAP (Manifold Absolute Pressure) sensor is difficult to follow the instantaneous air fuel ratio due to the valve timing effect. Therefore, a HFM (Hot Film Flow Meter) is widely used for measuring intake air flow in this case. However, the HFMs are incapable of indicating to reverse flow, the oscillation of intake air flow has an negative effect on the precision of the HFM. Consequently, the various duct configurations in front of the air flow sensor affect the precision of HFM sensitivity. This paper mainly focused on the analysis of the reverse flow, flow fluctuation in throttle upstream and the geometry of intake system which influence the HFM measurement.

극미세 교류 플라즈마 내에서의 홀 효과를 이용한 마이크로 자기센서 (A Magnetic Microsensor based on the Hall Effect in an AC Microplasma)

  • 서영호;한기호;조영호
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1266-1272
    • /
    • 2003
  • This paper presents a new class of magnetic microsensors based on the Hall effect in AC microplasma. In the theoretical study, we develop a simple model of the plasma Hall sensor and express the plasma Hall voltage as a function of magnetic field, plasma discharge field, pressure, and electrode geometry. On this basis, we have designed and fabricated magnetic microsensors using AC neon plasma. In the experiment, we have measured the Hall voltage output of the plasma microsensors for varying five different conditions, including the frequency and the magnitude of magnetic field, the frequency and the magnitude of plasma discharge voltage, and the neon pressure. The fabricated magnetic microsensors show a magnetic field sensitivity of 8.87${\pm}$0.18㎷/G with 4.48% nonlinearity.

An Algorithm for the Characterization of Surface Crack by Use of Dipole Model and Magneto-Optical Non-Destructive Inspection System

  • Lee, Jin-Yi;Lyu, Sung-Ki;Nam, Young-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1072-1080
    • /
    • 2000
  • Leakage magnetic flux (LMF) is widely used for non-contact detection of cracks. The combination of optics and LMF offers advantages such as real time inspection, elimination of electrical noise, high spatial resolution, etc. This paper describes a new nondestructive evaluation method based on an original magneto-optical inspection system, which uses a magneto-optical sensor, LMF, and an improved magnetization method. The improved magnetization method has the following characteristics: high observation sensitivity, independence of the crack orientation, and precise transcription of the geometry of a complex crack. The use of vertical magnetization enables the visualization of the length and width of a crack. The inspection system provides the images of the crack, and shows a possibility for the computation of its depth.

  • PDF

단일 센서와 공간집속 신호처리 기술을 이용한 복합재 판에서의 충격위치 결정 (Impact Localization of a Composite Plate Using a Single Transducer and Spatial Focusing Signal Processing Techniques)

  • 조성종;정현조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.715-722
    • /
    • 2012
  • A structural health monitoring (SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal (TR) and inverse filtering (IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.

  • PDF