• Title/Summary/Keyword: sensor geometry

Search Result 236, Processing Time 0.022 seconds

Modeling of Indoor Geometry and Environment Sensor for Responsive Virtual URS Service (반응형 가상 URS 서비스를 위한 실내 기하구조 및 환경 센서 모델링)

  • Jeon, Kyeong-Won;Ki, Jeong-Seok;Kwon, Yong-Moo
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.112-116
    • /
    • 2008
  • This paper presents URS (Ubiquitous Robotic Space) Modeling and service technique for the robotic security service while bridging between virtual space and physical space. First, this paper introduces a concept of virtual URS and responsive virtual URS. Second, this paper addresses modeling of URS which covers modeling of indoor geometry and environment sensor. Third, this paper describes virtual URS services including interactive virual-physical bridging service.

  • PDF

Opticla Angle Sensor Using Pseudorandom-code And Geometry-code (슈도 랜덤 코드와 기하학 코드를 이용한 광학적 Angle Sensor)

  • 김희성;도규봉
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.27-32
    • /
    • 2004
  • Absolute optical angle sensor is described that is an essentially digital opto-electronic device. Its purpose is to resolve the relative and absolute angle position of coded disk using Pseudorandom-code and Geometry-code. In this technique, the angular position of disk is determined in coarse sense first by Pseudorandom-code. A further fine angular position data based on Pixel count is obtained by Geometry-code which result 0.006$^{\circ}$ resolution of the system provided that 7 ${\mu}{\textrm}{m}$ line image sensor are used. The proposed technique is novel in a number of aspects, such that it has the non-contact reflective nature, high resolution of the system, relatively simple code pattern, and inherent digital nature of the sensor. And what is more the system can be easily modified to torque sensor by applying two coded disks in a manner that observe the difference in absolute angular displacement. The digital opto-electronic nature of the proposed sensor, along with its reporting of both torque and angle, makes the system ideal for use in intelligent vehicle systems. In this communication, we propose a technique that utilizes Pseudorandom-code and Geometry-code to determine accurate angular position of coded disk. We present the experimental results to demonstrate the validity of the idea.

In-network Distributed Event Boundary Computation in Wireless Sensor Networks: Challenges, State of the art and Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2804-2823
    • /
    • 2013
  • Wireless sensor network (WSN) is a promising technology for monitoring physical phenomena at fine-grained spatial and temporal resolution. However, the typical approach of sending each sensed measurement out of the network for detailed spatial analysis of transient physical phenomena may not be an efficient or scalable solution. This paper focuses on in-network physical phenomena detection schemes, particularly the distributed computation of the boundary of physical phenomena (i.e. event), to support energy efficient spatial analysis in wireless sensor networks. In-network processing approach reduces the amount of network traffic and thus achieves network scalability and lifetime longevity. This study investigates the recent advances in distributed event detection based on in-network processing and includes a concise comparison of various existing schemes. These boundary detection schemes identify not only those sensor nodes that lie on the boundary of the physical phenomena but also the interior nodes. This constitutes an event geometry which is a basic building block of many spatial queries. In this paper, we introduce the challenges and opportunities for research in the field of in-network distributed event geometry boundary detection as well as illustrate the current status of research in this field. We also present new areas where the event geometry boundary detection can be of significant importance.

Epipolar Resampling for High Resolution Satellite Imagery Based on Parallel Projection (평행투영 기반의 고해상도 위성영상 에피폴라 재배열)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Chang, Hwi-Jeong;Jeong, Ji-Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.81-88
    • /
    • 2007
  • The geometry of satellite image captured by linear CCD sensor is different from that of frame camera image. The fact that the exterior orientation parameters for satellite image with linear CCD sensor varies from scan line by scan line, causes the difference of image geometry between frame and linear CCD sensor. Therefore, we need the epipolar geometry for linear CCD image which differs from that of frame camera image. In this paper, we proposed a method of resampling linear CCD satellite image in epipolar geometry under the assumption that image is not formed in perspective projection but in parallel projection, and the sensor model is a 2D affine sensor model based on parallel projection. For the experiment, IKONOS stereo images, which are high resolution linear CCD images, were used and tested. As results, the spatial accuracy of 2D affine sensor model is investigated and the accuracy of epipolar resampled image with RFM was presented.

  • PDF

Geometry-Based Sensor Selection for Large Wireless Sensor Networks

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • We consider the sensor selection problem in large sensor networks where the goal is to find the best set of sensors that maximizes application objectives. Since sensor selection typically involves a large number of sensors, a low complexity should be maintained for practical applications. We propose a geometry-based sensor selection algorithm that utilizes only the information of sensor locations. In particular, by observing that sensors clustered together tend to have redundant information, we theorize that the redundancy is inversely proportional to the distance between sensors and seek to minimize this redundancy by searching for a set of sensors with the maximum average distance. To further reduce the computational complexity, we perform an iterative sequential search without losing optimality. We apply the proposed algorithm to an acoustic sensor network for source localization, and demonstrate using simulations that the proposed algorithm yields significant improvements in the localization performance with respect to the randomly generated sets of sensors.

Epipolar Geometry of Alternative Sensor Models for High-Resolution Satellite Imagery (간략모형식의 에피폴라 기하 생성 및 분석)

  • 정원조;김의명;유복모;유환희
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.179-184
    • /
    • 2004
  • High-resolution satellite imagery are used in various application field such as generation of DEM, orthophto, and three dimensional city model. To define the relation between image and object space, sensor modelling and generation of the epipolar image is essential processes. As the header information or physical sensor model becomes unavailable for the end users due to the national security or commercial purpose, generation of epipolar images without these information becomes one of important processes. In this study, epipolar geometry is generated and analysed by applying two generalized sensor models; parallel and parallel-perspective model Epipolar equation of the parallel model has linear property which is relatively simple; Epipolar geometry of the parallel-perspective model is non-linear. This linear property enable us to generate epipolar image efficiently.

  • PDF

A Study on the Control of the Welding Quality Using a Infrared sensor (적외선센서를 이용한 용접품질 제어에 관한 연구)

  • Kim I.S.;Son S.J.;Kim I.J.;Kim H.H.;Seo J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.754-758
    • /
    • 2005
  • Optimization of process variables such as arc current, welding voltage and welding speed in terms of the weld characteristics desired is the key step in achieving high quality and improving performance characteristics without increasing the cost. Consequently, incorrect settings of those process variables give rise to deviations in the welding characteristics from the desired bead geometry. Therefore, trainee welders are referred to the tabulated information relating different metal types and thickness as to recommend the desired values of process variables. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. However, it is difficult for the traditional identification methods to provide an accurate model because the optimized welding process is non-linear and time-dependent. In this paper, the possibilities of the Infra-red sensor in sensing and control of the bead geometry in the automated welding process are presented. Infra-red sensor is a well-known method to deal with the problems with a high degree of fuzziness so that the sensor is employed to build the relationship between process variables and the quality characteristic the proposed above respectively. Based on several neural networks, the mathematical models are derived from extensive experiments with different welding parameters and complex geometrical features. The developed system enables to select the optimal welding parameters and control the desired weld dimensions during arc welding process.

  • PDF

Information-Theoretic Approaches for Sensor Selection and Placement in Sensor Networks for Target Localization and Tracking

  • Wang Hanbiao;Yao Kung;Estrin Deborah
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.438-449
    • /
    • 2005
  • In this paper, we describes the information-theoretic approaches to sensor selection and sensor placement in sensor net­works for target localization and tracking. We have developed a sensor selection heuristic to activate the most informative candidate sensor for collaborative target localization and tracking. The fusion of the observation by the selected sensor with the prior target location distribution yields nearly the greatest reduction of the entropy of the expected posterior target location distribution. Our sensor selection heuristic is computationally less complex and thus more suitable to sensor networks with moderate computing power than the mutual information sensor selection criteria. We have also developed a method to compute the posterior target location distribution with the minimum entropy that could be achieved by the fusion of observations of the sensor network with a given deployment geometry. We have found that the covariance matrix of the posterior target location distribution with the minimum entropy is consistent with the Cramer-Rao lower bound (CRB) of the target location estimate. Using the minimum entropy of the posterior target location distribution, we have characterized the effect of the sensor placement geometry on the localization accuracy.

Comparison of Single-Sensor Stereo Model and Dual-Sensor Stereo Model with High-Resolution Satellite Imagery (고해상도 위성영상에서의 동종센서 스테레오 모델과 이종센서 스테레오 모델의 비교)

  • Jeong, Jaehoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.421-432
    • /
    • 2015
  • There are significant differences in geometric property and stereo model accuracy between single-sensor stereo that uses two images taken by stereo acquisition mechanism within identical sensor and dual-sensor stereo that randomly combines two images taken from two different sensors. This paper compares the two types of stereo pairs thoroughly. For experiment, two single-sensor stereo pairs and four dual-sensor stereo pairs were constituted using SPOT-5 stereo and KOMPSAT-2 stereo covering same area. While the two single-sensor stereos have stable geometry, the dual-sensor stereos produced two stable and two unstable geometries. In particular, the unstable geometry led to a decrease in stereo model accuracy of the dual-sensor stereos. The two types of stereo pairs were also compared under the stable geometry. Overall, single-sensor stereos performed better than dual-sensor stereos for vertical mapping, but dual-sensor stereos was more accurate for horizontal mapping. This paper has revealed the differences of two types of stereos with their geometric properties and positioning accuracies, suggesting important considerations for handling satellite stereo images, particularly for dual-satellite stereo images.

Intelligent Piezoelectric Sensor For Traffic Monitoring

  • IM J. I.;PARK K. M.;WANG J. H.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.263-266
    • /
    • 2004
  • This paper describes an intelligent piezoelectric traffic sensor which can be detected the over-weighted vehicles In motion. Based on finite element analysis for the sensor, the sensitivity was analyzed and the design was optimized. Studied parameters are the material properties of constitutional parts, the geometry of the sensor, the weight of the vehicle, and the speed of the vehicle. To verify the simulated results, we manufactured the sensor having the optimized geometry and the sensitivity was measured in the range from 0.5 to 3 ton of tensile and compressive stress. The measured results shows that the sensitivity and linearity of the sensor are closely agree with the designed values.

  • PDF