• Title/Summary/Keyword: sensor error

Search Result 2,234, Processing Time 0.029 seconds

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.

Hydrophobicity and Adhesion of SiO2/Polyurethane Nanocomposites Topcoat for Aircraft De-icing with Different Pre-curing Time (선경화 시간에 따른 항공기 De-icing용 나노실리카/폴리우레탄 복합재료 탑코트의 소수성 및 접착특성 평가)

  • Kim, Jong-Hyun;Shin, Pyeong-Su;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.365-370
    • /
    • 2020
  • The icing formation at aircraft occur problems such as increasing weight of the body, fuel efficiency reduction, drag reduction, the error of sensor, and etc. The viscosity of polyurethane (PU) topcoat was measured at 60℃ in real time to set the pre-curing time. SiO2 nanoparticles were dispersed in ethanol using ultra-sonication method. The SiO2/ethanol solution was sprayed on PU topcoat that was not cured fully with different pre-curing conditions. Surface roughness of SiO2/PU nanocomposites were measured using surface roughness tester and the surface roughness data was visualized using 3D mapping. The adhesion property between SiO2 and PU topcoat was evaluated using adhesion pull-off test. The static contact angle was measured using distilled water to evaluate the hydrophobicity. Finally, the pre-curing time of PU topcoat was optimized to exhibit the hydrophobicity of SiO2/PU topcoat.

A Study on Development of Portable Concrete Crack Measurement Device Using Image Processing Technique and Laser Sensors (이미지 처리기법 및 레이저 센서를 이용한 휴대용 콘크리트 균열 측정 장치 개발에 관한 연구)

  • Seo, Seunghwan;Ohn, Syng-Yup;Kim, Dong-Hyun;Kwak, Kiseok;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • Since cracks in concrete structures expedite corrosion of reinforced concrete over a long period of time, regular on-site inspections are essential to ensure structural usability and prevent degradation. Most of the safety inspections of facilities rely on visual inspection with naked eye, so cost and time consuming are severe, and the reliability of results differs depending on the inspector. In this study, a portable measuring device that can be used for safety diagnosis and maintenance was developed as a device that measures the width and length of concrete cracks through image analysis of cracks photographed with a camera. This device captures the cracks found within a close distance (3 m), and accurately calculates the unit pixel size by laser distance measurement, and automatically calculates the crack length and width with the image processing algorithm developed in this study. In measurement results using the crack image applied to the experiment, the measurement of the length of a 0.3 mm crack within a distance of 3 m was possible with a range of about 10% error. The crack width showed a tendency to be overestimated by detecting surrounding pixels due to vibration and blurring effect during the binarization process, but it could be effectively corrected by applying the crack width reduction function.

A Block-based Uniformly Distributed Random Node Arrangement Method Enabling to Wirelessly Link Neighbor Nodes within the Communication Range in Free 3-Dimensional Network Spaces (장애물이 없는 3차원 네트워크 공간에서 통신 범위 내에 무선 링크가 가능한 블록 기반의 균등 분포 무작위 노드 배치 방법)

  • Lim, DongHyun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1404-1415
    • /
    • 2022
  • The 2-dimensional arrangement method of nodes has been used in most of RF (Radio Frequency) based communication network simulations. However, this method is not useful for the an none-obstacle 3-dimensional space networks in which the propagation delay speed in communication is very slow and, moreover, the values of performance factors such as the communication speed and the error rate change on the depth of node. Such a typical example is an underwater communication network. The 2-dimensional arrangement method is also not useful for the RF based network like some WSNs (Wireless Sensor Networks), IBSs (Intelligent Building Systems), or smart homes, in which the distance between nodes is short or some of nodes can be arranged overlapping with their different heights in similar planar location. In such cases, the 2-dimensional network simulation results are highly inaccurate and unbelievable so that they lead to user's erroneous predictions and judgments. For these reasons, in this paper, we propose a method to place uniformly and randomly communication nodes in 3-dimensional network space, making the wireless link with neighbor node possible. In this method, based on the communication rage of the node, blocks are generated to construct the 3-dimensional network and a node per one block is generated and placed within a block area. In this paper, we also introduce an algorithm based on this method and we show the performance results and evaluations on the average time in a node generation and arrangement, and the arrangement time and scatter-plotted visualization time of all nodes according to the number of them. In addition, comparison with previous studies is conducted. As a result of evaluating the performance of the algorithm, it was found that the processing time of the algorithm was proportional to the number of nodes to be created, and the average generation time of one node was between 0.238 and 0.28 us. ultimately, There is no problem even if a simulation network with a large number of nodes is created, so it can be sufficiently introduced at the time of simulation.

Fabrication of Three-Dimensional Scanning System for Inspection of Mineshaft Using Multichannel Lidar (다중채널 Lidar를 이용한 수직갱도 조사용 3차원 형상화 장비 구현)

  • Soolo, Kim;Jong-Sung, Choi;Ho-Goon, Yoon;Sang-Wook, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.451-463
    • /
    • 2022
  • Whenever a mineshaft accidentally collapses, speedy risk assessment is both required and crucial. But onsite safety diagnosis by humans is reportedly difficult considering the additional risk of collapse of the unstable mineshaft. Generally, drones equipped with high-speed lidar sensors can be used for such inspection. However, the drone technology is restrictively applicable at very shallow depth, failing in mineshafts with depths of hundreds of meters because of the limit of wireless communication and turbulence inside the mineshaft. In previous study, a three-dimensional (3D) scanning system with a single channel lidar was fabricated and operated using towed cable in a mineshaft to a depth of 200 m. The rotation and pendulum movement errors of the measuring unit were compensated for by applying the data of inertial measuring unit and comparing the similarity between the scan data of the adjacent depths (Kim et al., 2020). However, the errors grew with scan depth. In this paper, a multi-channel lidar sensor to obtain a continuous cross-sectional image of the mineshaft from a winch system pulled from bottom upward. In this new approach, within overlapped region viewed by the multi-channel lidar, rotation error was compensated for by comparing the similarity between the scan data at the same depth. The fabricated system was applied to scan 0-165 m depth of the mineshaft with 180 m depth. The reconstructed image was depicted in a 3D graph for interpretation.

A Study on Transport Robot for Autonomous Driving to a Destination Based on QR Code in an Indoor Environment (실내 환경에서 QR 코드 기반 목적지 자율주행을 위한 운반 로봇에 관한 연구)

  • Se-Jun Park
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.26-38
    • /
    • 2023
  • This paper is a study on a transport robot capable of autonomously driving to a destination using a QR code in an indoor environment. The transport robot was designed and manufactured by attaching a lidar sensor so that the robot can maintain a certain distance during movement by detecting the distance between the camera for recognizing the QR code and the left and right walls. For the location information of the delivery robot, the QR code image was enlarged with Lanczos resampling interpolation, then binarized with Otsu Algorithm, and detection and analysis were performed using the Zbar library. The QR code recognition experiment was performed while changing the size of the QR code and the traveling speed of the transport robot while the camera position of the transport robot and the height of the QR code were fixed at 192cm. When the QR code size was 9cm × 9cm The recognition rate was 99.7% and almost 100% when the traveling speed of the transport robot was less than about 0.5m/s. Based on the QR code recognition rate, an experiment was conducted on the case where the destination is only going straight and the destination is going straight and turning in the absence of obstacles for autonomous driving to the destination. When the destination was only going straight, it was possible to reach the destination quickly because there was little need for position correction. However, when the destination included a turn, the time to arrive at the destination was relatively delayed due to the need for position correction. As a result of the experiment, it was found that the delivery robot arrived at the destination relatively accurately, although a slight positional error occurred while driving, and the applicability of the QR code-based destination self-driving delivery robot was confirmed.

  • PDF

Design of Cold-junction Compensation and Disconnection Detection Circuits of Various Thermocouples(TC) and Implementation of Multi-channel Interfaces using Them (다양한 열전쌍(TC)의 냉점보상과 단선감지 회로설계 및 이를 이용한 다채널 인터페이스 구현)

  • Hyeong-Woo Cha
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 2023
  • Cold-junction correction(CJC) and disconnection detection circuit design of various thermocouples(TC) and multi-channel TC interface circuit using them were designed. The CJC and disconnection detection circuit consists of a CJC semiconductor device, an instrumentation amplifier(IA), two resistors and a diode for disconnection detection. Based on the basic circuit, a multi-channel interface circuit was also implemented. The CJC was implemented using compensation semiconductor and IA, and disconnection detection was detected by using two resistor and a diode so that IA input voltage became -0.42V. As a result of the experiment using R-type TC, the error of the designed circuit was reduced from 0.14mV to 3㎶ after CJC in the temperature range of 0℃ to 1400℃. In addition, it was confirmed that the output voltage of IA was saturated from 88mV to -14.2V when TC was disconnected from normal. The output voltage of the designed circuit was 0V to 10V in the temperature range of 0℃ to 1400℃. The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel. The implemented multi-channel interface has a feature that can be applied equally to E, J, K, T, R, and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.

CNN Classifier Based Energy Monitoring System for Production Tracking of Sewing Process Line (봉제공정라인 생산 추적을 위한 CNN분류기 기반 에너지 모니터링 시스템)

  • Kim, Thomas J.Y.;Kim, Hyungjung;Jung, Woo-Kyun;Lee, Jae Won;Park, Young Chul;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.70-81
    • /
    • 2019
  • The garment industry is one of the most labor-intensive manufacturing industries, with its sewing process relying almost entirely on manual labor. Its costs highly depend on the efficiency of this production line and thus is crucial to determine the production rate in real-time for line balancing. However, current production tracking methods are costly and make it difficult for many Small and Medium-sized Enterprises (SMEs) to implement them. As a result, their reliance on manual counting of finished products is both time consuming and prone to error, leading to high manufacturing costs and inefficiencies. In this paper, a production tracking system that uses the sewing machines' energy consumption data to track and count the total number of sewing tasks completed through Convolutional Neural Network (CNN) classifiers is proposed. This system was tested on two target sewing tasks, with a resulting maximum classification accuracy of 98.6%; all sewing tasks were detected. In the developing countries, the garment sewing industry is a very important industry, but the use of a lot of capital is very limited, such as applying expensive high technology to solve the above problem. Applied with the appropriate technology, this system is expected to be of great help to the garment industry in developing countries.

A Multi-Degree of Freedom Measurement System for Determining Geometric Errors in Miniaturized Machine Tool (소형공작기계의 기하학적 오차 평가를 위한 다자유도 측정시스템)

  • S. H., Kweon;Y., Liu;S. H., Yang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.638-643
    • /
    • 2004
  • 소형화된 기계가공시스템은 사용재료의 다양화와 에너지 및 공간의 감소와 같은 장점을 가지고 작고 정밀한 부품을 가공할 수 있는 시스템으로 주목받고 있다. 이러한 시스템이 비록 그 크기가 일반적인 가공시스템에 비해 작지만 정렬 및 조립공정, 기계요소의 불완정성에 의한 기하학적 오차는 여전히 존재한다. 기하학적 오차 평가는 기계시스템의 정밀도를 효과적으로 적은 비용으로 향상시킬 수 있는 오차보정기술을 적용할 수 있는 토대가 된다. 일반적으로, 3 축의 직선축으로 이루어진 공작기계는 21 개의 오차요소를 가진다. 레이져간섭계는 이러한 오차요소를 평가하는데 널리 사용되고 있지만 광학계를 정렬하고 설치하는 데 많은 어려움이 있으며 한번의 설치로 한 개의 오차요소만이 측정 가능하다. 또한, 소형공작기계의 경우, 그 크기로 인해 기존의 레이져 간섭계를 직접적으로 적용할 수 없다. 따라서, 본 연구에서는 소형공작기계를 포함한 소형가공시스템의 기하학적 오차 평가를 위한 새로운 다자유도 측정시스템을 제안하였다. 5 개의 정전용량변위센서를 사용하는 이 시스템을 통해 한 축의 움직임에 따른 5 개의 오차요소를 동시에 측정 가능하다. 균질 변환행렬을 이용한 측정알고리듬을 구성하고 이를 모의시험을 통해 평가하였다. 수학적 모델링을 통해 각 센서의 출력값을 유도하고 이를 이용하여 각 오차요소를 계산하기 위한 식을 유도하였다. 여기서, 단순화된 식을 적용한 경우, 임의의 오차에 대한 측정 알고리듬의 정확도를 평가하였다. 또한, 측정 시스템의 설치시 발생하는 셋업오차에 대한 측정 알고리듬의 민감도 분석을 행하였다. 제안하는 측정 시스템은 구조가 간단하고 고가의 부가장비가 필요치 않다. 또한, 적은 비용으로 구성할 수 있으며 높은 측정 정밀도를 가지고 소형가공시스템에 필요한 오차 평가를 행할 수 있다.가 함유된 계란을 생산하고 섭취하였을 때 특정항체들의 결합을 통해 병원성 미생물의 성장이나 군체를 형성하는 것을 무력화시켜 결과적으로 병원균을 감소시키거나 억제시킨다는 점이다. 오늘날 약물에 내성을 지닌 박테리아의 출현으로 질병감염을 막는데 항생제의 사용효과가 점차 감소하고 있기 때문에 이러한 항생제를 대체할 수 있는 방안으로 계란항체를 이용할 수 있다.한 중공 플랜지 형상의 단조 방법 중 보다 적절한 단조방법인 압조 단조에 있어서 일반적으로 사용되고 있는 SM10C에 대한 유한요소 해석을 수행하였으며, 제품의 형상비에 따라 폴딩 결함의 발생 유무를 검토하고, 폴딩 결함 없이 단조하기 위한 중공 플랜지의 형상한계 비를 제시하였다.도 경미하게 나타났으나, 경련이 나타난 쥐에서는 KA만을 투여한 흰쥐와 구별되지 않았다. 이상의 APT의 항산화 효과는 KA로 인한 뇌세포 변성 개선에 중요한 인자로 작용할 것으로 사료되나, 보다 명확한 APT의 기전을 검색하고 직접 임상에 응응하기 위하여는 보다 다양한 실험 조건이 보완되어야 찰 것으로 생각된다. 항우울약들의 항혈소판작용은 PKC-기질인 41-43 kD와 20 kD의 인산화를 억제함에 기인되는 것으로 사료된다.다. 것으로 사료된다.다.바와 같이 MCl에서 작은 Dv 값을 갖는데, 이것은 CdCl$_{4}$$^{2-}$ 착이온을 형성하거나 ZnCl$_{4}$$^{2-}$ , ZnCl$_{3}$$^{-}$같은 이온과 MgCl$^{+}$, MgCl$_{2}$같은 이온종을 형성하기 때문인것 같다. 한편 어떠한 용리액에서던지 NH$_{4}$$^{+}$의 경

  • PDF

Heterogeneous Sensor Coordinate System Calibration Technique for AR Whole Body Interaction (AR 전신 상호작용을 위한 이종 센서 간 좌표계 보정 기법)

  • Hangkee Kim;Daehwan Kim;Dongchun Lee;Kisuk Lee;Nakhoon Baek
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.7
    • /
    • pp.315-324
    • /
    • 2023
  • A simple and accurate whole body rehabilitation interaction technology using immersive digital content is needed for elderly patients with steadily increasing age-related diseases. In this study, we introduce whole-body interaction technology using HoloLens and Kinect for this purpose. To achieve this, we propose three coordinate transformation methods: mesh feature point-based transformation, AR marker-based transformation, and body recognition-based transformation. The mesh feature point-based transformation aligns the coordinate system by designating three feature points on the spatial mesh and using a transform matrix. This method requires manual work and has lower usability, but has relatively high accuracy of 8.5mm. The AR marker-based method uses AR and QR markers recognized by HoloLens and Kinect simultaneously to achieve a compliant accuracy of 11.2mm. The body recognition-based transformation aligns the coordinate system by using the position of the head or HMD recognized by both devices and the position of both hands or controllers. This method has lower accuracy, but does not require additional tools or manual work, making it more user-friendly. Additionally, we reduced the error by more than 10% using RANSAC as a post-processing technique. These three methods can be selectively applied depending on the usability and accuracy required for the content. In this study, we validated this technology by applying it to the "Thunder Punch" and rehabilitation therapy content.