• Title/Summary/Keyword: sensor density

Search Result 601, Processing Time 0.028 seconds

Improvement of HgCdTe Qualities grown by MOVPE using MBE grown CdTe/Si as Substrate (MBE법으로 성장된 CdTe(211)/Si 기판을 이용한 MOVPE HgCdTe 박막의 특성 향상)

  • Kim, Jin-Sang;Suh, Sang-Hee;Sivananthan, S.
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.282-288
    • /
    • 2003
  • We report the growth of HgCdTe by metal organic vapor phase epitaxy (MOVPE), using (211)B CdTe/Si substrates grown by molecular beam epitaxy (MBE). The surface morphology of these films is very smooth with hillock free. The etch pit densities (EPD) and full widths at half maximum (FWHM) of x-ray rocking curves exhibited that the crystalline quality of HgCdTe epilayer on MBE grown CdTe/Si was improved compare to HgCdTe on GaAs substrate. The Hall parameters of undoped HgCdTe layers on CdTe/Si showed n-type behavior with carrier concentration of $8{\times}10^{14}/cm^3$ at 77K. But HgCdTe on GaAs showed p-type conductivity due to in corporation of p-type impurities during GaAs substrate preparation. It is thought that these results are applicable for large area HgCdTe forcal plane arrays of $1024{\times}1024$ format and beyound.

High Performance of SWIR HgCdTe Photovoltaic Detector Passivated by ZnS

  • Lanh, Ngoc-Tu;An, Se-Young;Suh, Sang-Hee;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • Short wave infrared (SWIR) photovoltaic devices have been fabricated from metal organic vapour phase epitaxy (MOVPE) grown n- on p- HgCdTe films on GaAs substrates. The MOVPE grown films were processed into mesa type discrete devices with wet chemical etching employed for meas delineation and ZnS surface passivatlon. ZnS was thermally evaporated from effusion cell in an ultra high vacuum (UHV) chamber. The main features of the ZnS deposited from effusion cell in UHV chamber are low fixed surface charge density, and small hysteresis. It was found that a negative flat band voltage with -0.6 V has been obtained for Metal Insulator Semiconductor (MIS) capacitor which was evaporated at $910^{\circ}C$ for 90 min. Current-Voltage (I-V) and temperature dependence of the I-V characteristics were measured in the temperature range 80 - 300 K. The Zero bias dynamic resistance-area product ($R_{0}A$) was about $7500{\Omega}-cm^{2}$ at room temperature. The physical mechanisms that dominate dark current properties in the HgCdTe photodiodes are examined by the dependence of the $R_{0}A$ product upon reciprocal temperature. From theoretical considerations and known current expressions for thermal and tunnelling process, the device is shown to be diffusion limited up to 180 K and g-r limited at temperature below this.

Dependence of the Electrical and Optical Properties of CdS Thin Films on Substrate and Annealing Temperatures (기판온도 및 열처리온도에 대한 CdS 박막의 전기적 및 광학적 특성)

  • Park, Ki-Cheol;Shim, Ho-Seob;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.163-171
    • /
    • 1997
  • CdS thin films for window material of solar cell were prepared by close spaced vapor transport deposition system and annealed at different temperatures. The structural, electrical, and optical properties of as-deposited and annealed CdS films were investigated as functions of substrate and annealing temperatures. The CdS thin films were grown perpendicularly to the substrate along the (002)plane with hexagonal structure regardless of the preparation conditions The resistivity of the CdS film deposited was increased gradually from $60{\Omega}cm$ for $25^{\circ}C$ to $2{\times}10^{4}{\Omega}cm$ for $300^{\circ}C$. The optical transmittance at the substrate temperature of $25^{\circ}C$ was about 80% in the the visible spectrum. The resistivity increased monotonically, and the optical transmittance was decreased substantially with annealing temperature due to the increased defect density in the CdS film.

  • PDF

Thermal Transfer Pixel Patterning by Using an Infrared Lamp Source for Organic LED Display (유기 발광 소자 디스플레이를 위한 적외선 램프 소스를 활용한 열 전사 픽셀 패터닝)

  • Bae, Hyeong Woo;Jang, Youngchan;An, Myungchan;Park, Gyeongtae;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • This study proposes a pixel-patterning method for organic light-emitting diodes (OLEDs) based on thermal transfer. An infrared lamp was introduced as a heat source, and glass type donor element, which absorbs infrared and generates heat and then transfers the organic layer to the substrate, was designed to selectively sublimate the organic material. A 200 nm-thick layer of molybdenum (Mo) was used as the lightto-heat conversion (LTHC) layer, and a 300 nm-thick layer of patterned silicon dioxide (SiO2), featuring a low heat-transfer coefficient, was formed on top of the LTHC layer to selectively block heat transfer. To prevent the thermal oxidation and diffusion of the LTHC material, a 100 nm-thick layer of silicon nitride (SiNx) was coated on the material. The fabricated donor glass exhibited appropriate temperature-increment property until 249 ℃, which is enough to evaporate the organic materials. The alpha-step thickness profiler and X-ray reflection (XRR) analysis revealed that the thickness of the transferred film decreased with increase in film density. In the patterning test, we achieved a 100 ㎛-long line and dot pattern with a high transfer accuracy and a mean deviation of ± 4.49 ㎛. By using the thermal-transfer process, we also fabricated a red phosphorescent device to confirm that the emissive layer was transferred well without the separation of the host and the dopant owing to a difference in their evaporation temperatures. Consequently, its efficiency suffered a minor decline owing to the oxidation of the material caused by the poor vacuum pressure of the process chamber; however, it exhibited an identical color property.

Improvement of the carrier transport property and interfacial behavior in InGaAs quantum well Metal-Oxide-Semiconductor Field-Effect-Transistors with sulfur passivation (황화 암모늄을 이용한 Al2O3/HfO2 다층 게이트 절연막 트랜지스터 전기적 및 계면적 특성 향상 연구)

  • Kim, Jun-Gyu;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.266-269
    • /
    • 2020
  • In this study, we investigated the effect of a sulfur passivation (S-passivation) process step on the electrical properties of surface-channel In0.7Ga0.3As quantum-well (QW) metal-oxide-semiconductor field-effect transistors (MOSFETs) with S/D regrowth contacts. We fabricated long-channel In0.7Ga0.3As QW MOSFETs with and without (NH4)2S treatment and then deposited 1/4 nm of Al2O3/HfO2 through atomic layer deposition. The devices with S-passivation exhibited lower values of subthreshold swing (74 mV/decade) and drain-induced barrier lowering (19 mV/V) than the devices without S-passivation. A conductance method was applied, and a low value of interface trap density Dit (2.83×1012 cm-2eV-1) was obtained for the devices with S-passivation. Based on these results, interface traps between InGaAs and high-κ are other defect sources that need to be considered in future studies to improve III-V microsensor sensing platforms.

Structural and Dielectric Properties of PLT Thin Plates (PLT 박편의 구조 및 유전특성)

  • Lee, Jae-Man;Park, Ki-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.51-60
    • /
    • 1998
  • La-modified $PbTiO_{3}$(PLT) thin plates were prepared for the fabrication of PLT pyroelectric IR sensors. The effects of the preparation parameters such as tile sintering temperature, the La content, and the ambient powder quantity, on the microstructural and dielectric properties of PLT thin plates were investigated by X-ray diffraction, scanning electron microscope, and measurements of relative density and dielectric properties. With an increased La content, the tetragonality c/a was decreased but the densification and the grain size were increased, which is considered to be due to the increased Pb vacancy concentration to maintain charge neutrality at the increased of La content. When the quantity of the ambient powder wvas increased, the tetragonality was slightly increased, which is believed io be due to the reduced evaporation of PbO. But the e(fect is insignificant compared to that of La content. The dielectric constant at room temperature was increased and the Curie temperature was decreased in accordance with the decreased tetragonality ratio c/a with the increase of La content. The dielectric constant and tan ${\delta}$ of $500{\mu}m$ thick PLT thin plate with 10 wt% excess PbO and 10 mol% La contant sintered at $1250^{\circ}C$ for 2 hours in ambient powder of $0.02\;g/cm^{3}$ were 360 and 0.02, respectively.

  • PDF

Superconducting properties of layer-by-layer grown $YBa_{2}Cu_{3}O_{7}$ thin film prepared by pulsed laser deposition (펄스 레이저 증착법으로 layer-by-layer 성장시킨 $YBa_{2}Cu_{3}O_{7}$ 박막의 초전도특성)

  • Kim, In-Seon;Lim, Hae-Ryong;Kim, Dong-Ho;Park, Yon-Ki;Park, Jong-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.61-66
    • /
    • 1998
  • High quality c-axis oriented $YBa_{2}Cu_{3}O_{7}$ films were prepared using the pulsed laser deposition on $SrTiO_{3}$(100) substrate. The atomically smooth $SrTiO_{3}$surface with terraces one unit cell in height could be obtained by a high temperature annealing. $YBa_{2}Cu_{3}O_{7}$ thin films deposited on the substrates exhibited layer-by-layer growth with a c-axis unit cell height. $YBa_{2}Cu_{3}O_{7}$ thin films thus prepared showed critical temperature ${\ge}90$ K with transition width ${\le}0.6$ K, room temperature resistivity of ${\sim}300{\mu}{\Omega}cm$, and critical current density ${\sim}4.6{\times}10^{6}A/cm^{2}$ at 77 K.

  • PDF

Growth mechanism of three dimensionally structured TiO2 thin film for gas sensors (가스 감응용 3차원 구조체 TiO2 박막 성장기구)

  • Moon, Hi-Gyu;Yoon, Seok-Jin;Park, Hyung-Ho;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.110-115
    • /
    • 2009
  • Polystyrene (PS) microspheres were used to good advantage as a template material to prepare macroporous $TiO_2$ thin films. This is enabled to run the thermal decomposition of the PS without the collapsing of the 3-D macroporous framework during the calcination step. $TiO_2$ thin films were deposited onto the colloidal templated substrates at room temperature by RF sputtering, and then samples were thermally treated at $450^{\circ}C$ for 40.min in air to remove the organic colloidal template and induce crystallization of the $TiO_2$ film. The macroporous $TiO_2$ thin film exhibited a quasi-ordered partially hexagonal close-packed structure. Burst holes, estimated to be formed during PS thermal decomposition, are seen as the hemisphere walls. the inner as well as the outer surfaces of the hollow hemispheres formed by the method of thermal decomposition can be easily accessed by the diffusing gas species. As a consequence, the active surface area interacting with the gas species is expected to be enlarged about by a factor of fourth as large as compared to that of a planar films. Also the thickness at neighboring hemisphere could be controlled a few nm thickness. If the acceptor density becomes as large that depletion width reaches those thickness, the device is in the pinch off-situation and a strong resistance change should be observed.

A Study on Development of Automatic Path Tracking Algorithm for LNG Aluminium Plate and Selection of Process Parameters by Using Artificial Intelligence (LNG 알루미늄 판재 가공용 자동 궤적 추적 알고리즘 개발 및 인공지능을 이용한 공정조건 선정에 관한 연구)

  • 문형순;권봉재;정문영;신상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.17-25
    • /
    • 1998
  • Aluminum alloys have low density, relatively high strength and yield strength, good plasticity, good machinability, and high corrosion and acid resistance. Therefore, they are suitable for large containers for the food, chemical and other industries. Large containers are often bodies of revolution consisting of shell courses, stiffening rings, heads and other elements joined by annular welds. Larger containers have longer welds and require greater leak-tightness and higher weld mechanical properties. The LNG tank consists of aluminum plates with various sizes, so its construction should by divided by several sections. Moreover, each section has its own sub-section consisted of several aluminum plates. To guarantee the quality of huge LNG tank, therefore, the precise control of plate dimension should by urgently needed in conjunction with the appropriate selection of process parameters such as cutting speed, depth of cut, rotational speed and so on. In this paper, a manufacturing system was developed to implement automatic circular tracking in height direction and automatic circular interpolation in depth of cut direction. Also, the neural network based on the backpropagation algorithm was used to predict the cutting quality and motor load related with the life time of the developed system. It was revealed that the manufacturing system and the neural network could be effectively applied to the bevelling process and to predict the quality of machined area and the motor load.

  • PDF

Study on the possibility of the aerosol and/or Yellow dust detection in the atmosphere by Ocean Scanning Multispectral Imager(OSMI)

  • Chung, Hyo-Sang;Park, Hye-Sook;Bag, Gyun-Myeong;Yoon, Hong-Joo;Jang, Kwang-Mi
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.409-414
    • /
    • 1998
  • To examine the detectability of the aerosol and/or Yellow dust from China crossing over the Yellow sea, three works carried out as follows , Firstly, a comparison was made of the visible(VIS), water vapor(WV), and Infrared(IR) images of the GMS-5 and NOAA/AVHRR on the cases of yellow sand event over Korea. Secondly, the spectral radiance and reflectance(%) was observed during the yellow sand phenomena on April, 1998 in Seoul using the GER-2600 spectroradiometer, which observed the reflected radiance from 350 to 2500 nm in the atmosphere. We selected the optimum wavelength for detecting of the yellow sand from this observation, considering the effects of atmospheric absorption. Finally, the atmospheric radiance emerging from the LOWTRAN-7 radiative transfer model was simulated with and without yellow sand, where we used the estimated aerosol column optical depth ($\tau$ 673 nm) in the Meteorological Research Institute and the d'Almeida's statistical atmospheric aerosol radiative characteristics. The image analysis showed that it was very difficult to detect the yellow sand region only by the image processing because the albedo characteristics of the sand vary irregularly according to the density, size, components and depth of the yellow sand clouds. We found that the 670-680 nm band was useful to simulate aerosol characteristics considering the absorption band from the radiance observation. We are now processing the simulation of atmospheric radiance distribution in the range of 400-900 nm. The purpose of this study is to present the preliminary results of the aerosol and/or Yellow dust detectability using the Ocean Scanning Multispectral Imager(OSMI), which will be mounted on KOMPSAT-1 as the ocean color monitoring sensor with the range of 400-900 nm wavelength.

  • PDF