• Title/Summary/Keyword: sensor density

Search Result 601, Processing Time 0.029 seconds

Energy Efficiency in Wireless Sensor Networks using Linear-Congruence on LDPC codes (LDPC 코드의 Linear-Congruence를 이용한 WSN 에너지 효율)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.68-73
    • /
    • 2007
  • Recently, WSN(wireless sensor networks) consists of several sensor nodes in sensor field. And each sensors have the enforced energy constraint. Therefore, it is important to manage energy efficiently. In WSN application system, FEC(Forward error correction) increases the energy efficiency and data reliability of the data transmission. LDPC(Low density parity check) code is one of the FEC code. It needs more encoding operation than other FEC code by growing codeword length. But this code can approach the Shannon capacity limit and it is also can be used to increase the data reliability and decrease the transmission energy. In this paper, the author adopt Linear-Congruence method at generating parity check matrix of LDPC(Low density parity check) codes to reduce the complexity of encoding process and to enhance the energy efficiency in the WSN. As a result, the proposed algorithm can increase the encoding energy efficiency and the data reliability.

Development of Liquid Density Measurement Sensor Using the Natural Frequency of a Pipe (파이프의 고유진동수를 이용한 액체밀도측정 센서개발)

  • Chang, Kyung-Ho;Lee, Yong-Jae;Kim, Kwang-Pyo;Ahn, Byung-Duk
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.9-14
    • /
    • 1995
  • For the development of liquid density measuring sensor using the natural frequency of a pipe, its principle and construction method were described. The stainless steel pipe, which has length of 32 cm, inside diameter of 2.3 cm and outside diameter of 2.5 cm, was used for the sensor. The exciting coil and the photo sensor were used to excite and to pick-up it, and the feedback circuit was designed to continue its vibrating. The natural frequency was consistent with the result of the spectrum analysis. It had a linearity of 0.0027 % and a sensitivity of 0.032 % in liquid density range from $0.8\;g/cm^{3}$ to $1.4\;g/cm^{3}$ and its frequency variation ratio was 0.024 $%/^{\circ}C$ in temperature range from $10^{\circ}C$ to $35^{\circ}C$.

  • PDF

Design of Magnet Console for NMR Ripeness Sensor Using ANSYS

  • Cho, Seong-In;Chung, Chang-Ho;Kim, Seung-Chan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.528-538
    • /
    • 1996
  • A magent console is critical element since its homogeneity is essential to the performance of a nuclear magnetic resonance (NMR) based sensor. Geometry and properties of magnet materials determine the magnetic flux density and homogeneity of the console. This study is carried out to develop a design scheme of the magnet console using ANSYS to reduce the design error of the magnet console compared . To enhance the performance of the magnet console, corner steel was proposed and validated by simulation and manufactured one. The corner steel increased the magnetic flux density (B) by about 1% and enhanced homogeneity by approximately 3 times. There was about 3% difference between simulated and measured B values.

  • PDF

Fuzzy Logic Approach to Zone-Based Stable Cluster Head Election Protocol-Enhanced for Wireless Sensor Networks

  • Mary, S.A. Sahaaya Arul;Gnanadurai, Jasmine Beulah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1692-1711
    • /
    • 2016
  • Energy is a scarce resource in wireless sensor networks (WSNs). A variety of clustering protocols for WSNs, such as the zone-based stable election protocol-enhanced (ZSEP-E), have been developed for energy optimization. The ZSEP-E is a heterogeneous zone-based clustering protocol that focuses on unbalanced energy consumption with parallel formation of clusters in zones and election of cluster heads (CHs). Most ZSEP-E research has assumed probabilistic election of CHs in the zones by considering the maximum residual energy of nodes. However, studies of the diverse CH election parameters are lacking. We investigated the performance of the ZSEP-E in such scenarios using a fuzzy logic approach based on three descriptors, i.e., energy, density, and the distance from the node to the base station. We proposed an efficient ZSEP-E scheme to adapt and elect CHs in zones using fuzzy variables and evaluated its performance for different energy levels in the zones.

A Calculation Method of Closeness Centrality for High Density Wireless Sensor Networks

  • Dehkanov, Shuhrat;Kim, Young-Rag;Lee, Bok-Man;Kim, Chong-Gun
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.43-46
    • /
    • 2008
  • Centrality has been actively studied in network analysis field. In this paper we show a calculation method of closeness centrality for WSN. Since nodes in a sensor network are very scarce in energy and computation capability the calculation of the closeness is done in two tiers by dividing network into clusters. In first step closeness centrality for cluster heads is calculated. In the second step closeness of member nodes of the chosen cluster is computed in respect to that cluster itself.

  • PDF

Development of IoT-based PM2.5 Measuring Device (사물인터넷 기반 초미세먼지(PM2.5) 측정 장치 개발)

  • Loh, Byoung Gook;Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.21-26
    • /
    • 2017
  • An IoT-based particulate matter (PM2.5) sensing device (PSD) is developed. The PSD consists of a PM2.5 sensor, signal processing circuit, and wi-fi enabled-microprocessor along with temperature and humidity sensors. The PSD estimates PM2.5 density by measuring light scattered by PM2.5. To gauge performance of the PSD, PM2.5 density of open air was measured with the PSD and compared with that of the collocated-government-certified measuring station. Measurements were taken at a sampling frequency of 100 Hz and moving-averaged to remove measurement noise. When compared to the result of the measuring station, average percentile error of PM2.5 density from the PSD is found to be 31%. A correlation coefficient is found to be 0.72 which indicates a strong correlation. Instantaneous variation, however, may far exceed average errors, leading to a conclusion that the PSD is more suitable for estimating average trend of PM2.5 density variations than estimating instantaneous PM2.5 density.

PRELIMINARY STUDY ON THE ABRUPT DENSITY ENHANCEMENT IN LOW LATITUDE REGION DETECTED BY KOMPSAT-I (KOMPSAT-I으로 관측한 저위도 이온층 밀도 급상승 현상에 대한 연구)

  • 박재홍;이재진;이은상;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2003
  • SPS(Space Physics Sensor) onboard the KOMPSAT-I, which was launched at 1999, had transmitted ionospheric plasma density and electron temperature during the solar maximum from June 2000 to August 2001, SPS IMS onboard KOMPSAT-I occasionally detected abrupt plasma density enhancement in low-latitude region, in which the plasma density abruptly increases in a narrow region. Statistical analysis of the data obtained during the entire operational period shows that the occurrence probability of these events has its peak value at the Atlantic region and at the Hawaiian region where the geomagnetic field strength is weak. And the occurrence frequency has no correlation with Dst index or F10.7 index. The correlation between plasma density and the electron temperature shows a wide variety, but the anti-correlated cases are dominant.

A Study of Magnetic Properties of 410L Stainless Steel for Manufacture of ABS Sensor Ring (410L 스테인레스 강의 ABS센서 링 제조를 위한 자기적 특성에 관한 연구)

  • Yang, H.S.;Kwak, C.S.;Rhim, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.241-246
    • /
    • 1998
  • It is well known for 410L ferritic stainless steel powder to applicate a sensor ring in anti-lock brake system of automobile, several studies, because of its excellent magnetic properties. This study was carried out to investigate the magnetic properties such as the maximum magnetic induction, coercivity and maximum permeability of the materials with functions of sintering density, time and temperature, and concluded as follows: 1. Sintering under the circumstances of Ar gas and the temperature of $1250^{\circ}C$ for 60min, showed that nitrogen was increased, whereas carbon and oxygen decreased in quantities. 2. Both maximum magnetic induction value of 4700Gauss and permeability of 200 were obtained at the maximum sintering density of $6.89g/cm^2$. Here, the properties showed a linear increasement with increasing the sintering density. 3. Coercivity sharply decreased with incresing the sintering density and reached to 7.6Oe at the maximum sintering density of $6.89g/cm^2$.

  • PDF

Design of the Magnetization System of the Permanent Magnet in Magnetic Sensors (마그네틱 위치 센서용 영구자석의 착자 시스템 설계)

  • Jeong, Seung-Ho;Lee, Chul-Kyu;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1029-1031
    • /
    • 2005
  • A magnetic position sensor is a apparatus that detect the rotating position by measuring the value of the flux density of the rotating position. In this paper, the magnetization system of the permanent magnet in the magnetic position sensor which detects the rotating position was designed. The permanent magnet was magnetized for the flux density into the hole element to be sinusoidal distribution according to the rotating position. To make the sinusoidal distribution of flux density, the magnetization values according to the position in permanent magnet were varied by adjusting the air gap between the pole of the magnetization fixture and the surface of the permanent magnet.

  • PDF

Estimation of the Sensing Ability According to Smart Sensor Types (지적센서의 형태에 따른 센싱능력 평가)

  • 황성연;홍동표;강희용
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.111-117
    • /
    • 2001
  • In this paper, we will propose the new method that estimates the sensing ability of smart sensor. A study is estimation method that evaluates the sensing ability about smart sensor respectively. According to acceleration(g) and displacement changing, we estimated the sensing ability of smart sensor using the SAI(Sensing Ability Index) method respectively. We made the smart sensors in our experiment. The types of smart sensor are three types(H1, H1, H3 smart sensor). The smart sensors were developed for recognition of materials. Experiments and analysis were executed to estimated the sensing abili-ty of smarty sensor. Dynamic characteristics of smart sensors(acceleration changing) were evaluated respectively through a new method(SAI) that uses the power spectrum density.

  • PDF