• Title/Summary/Keyword: sensor density

Search Result 601, Processing Time 0.034 seconds

Energy Efficient Cluster Event Detection Scheme using MBP in Wireless Sensor Networks (센서 네트워크에서 최소 경계 다각형을 이용한 에너지 효율적인 군집 이벤트 탐지 기법)

  • Kwon, Hyun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.101-108
    • /
    • 2010
  • Many works on energy-efficient cluster event detection schemes have been done considering the energy restriction of sensor networks. The existing cluster event detection schemes transmit only the boundary information of detected cluster event nodes to the base station. However, If the range of the cluster event is widened and the distribution density of sensor nodes is high, the existing cluster event detection schemes need high transmission costs due to the increase of sensor nodes located in the event boundary. In this paper, we propose an energy-efficient cluster event detection scheme using the minimum boundary polygons (MBP) that can compress and summarize the information of event boundary nodes. The proposed scheme represents the boundary information of cluster events using the MBP creation technique in the large scale of sensor network environments. In order to show the superiority of the proposed scheme, we compare it with the existing scheme through the performance evaluation. Simulation results show that our scheme maintains about 92% accuracy and decreases about 80% in energy consumption to detect the cluster event over the existing schemes on average.

Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm

  • Li, Shunlong;Dong, Jialin;Lu, Wei;Li, Hui;Xu, Wencheng;Jin, Yao
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.769-780
    • /
    • 2017
  • Cable force monitoring is an essential and critical part of the safety evaluation of cable-supported bridges. A reasonable cable force monitoring scheme, particularly, sensor placement related to accurate safety assessment and budget cost-saving becomes a major concern of bridge administrative authorities. This paper presents optimal sensor placement for cable force monitoring by selecting representative sensor positions, which consider the spatial correlativeness existing in the cable group. The limited sensors would be utilized for maximizing useful information from the monitored bridges. The maximum information coefficient (MIC), mutual information (MI) based kernel density estimation, as well as Pearson coefficients, were all employed to detect potential spatial correlation in the cable group. Compared with the Pearson coefficient and MIC, the mutual information is more suitable for identifying the association existing in cable group and thus, is selected to describe the spatial relevance in this study. Then, the bond energy algorithm, which collects clusters based on the relationship of surrounding elements, is used for the optimal placement of cable sensors. Several optimal placement strategies are discussed with different correlation thresholds for the cable group of Nanjing No.3 Yangtze River Bridge, verifying the effectiveness of the proposed method.

Development of a Vehicle Positioning Algorithm Using Reference Images (기준영상을 이용한 차량 측위 알고리즘 개발)

  • Kim, Hojun;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1131-1142
    • /
    • 2018
  • The autonomous vehicles are being developed and operated widely because of the advantages of reducing the traffic accident and saving time and cost for driving. The vehicle localization is an essential component for autonomous vehicle operation. In this paper, localization algorithm based on sensor fusion is developed for cost-effective localization using in-vehicle sensors, GNSS, an image sensor and reference images that made in advance. Information of the reference images can overcome the limitation of the low positioning accuracy that occurs when only the sensor information is used. And it also can acquire estimated result of stable position even if the car is located in the satellite signal blockage area. The particle filter is used for sensor fusion that can reflect various probability density distributions of individual sensors. For evaluating the performance of the algorithm, a data acquisition system was built and the driving data and the reference image data were acquired. Finally, we can verify that the vehicle positioning can be performed with an accuracy of about 0.7 m when the route image and the reference image information are integrated with the route path having a relatively large error by the satellite sensor.

A Study on the Correlation between the Harmful Cyanobacterial Density and Phycocyanin Concentration at Recreational Sites in Nakdong River (낙동강 친수활동구간 유해 남조류 분포와 피코시아닌(Phycocyanin) 농도 상관성에 관한 연구)

  • Hyo-Jin Kim;Min-Kyeong Kim
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.6
    • /
    • pp.451-464
    • /
    • 2023
  • Harmful cyanobacterial monitoring is time-consuming and requires skilled professionals. Recently, Phycocyanin, the accessory pigment unique to freshwater cyanobacteria, has been proposed as an indicator for the presence of cyanobacteria, with the advantage of rapid and simple measurement. The purpose of this research was to evaluate the correlation between the harmful cyanobacterial cell density and the concentration of phycocyanin and to consider how to use the real-time water quality monitoring system for algae bloom monitoring. In the downstream of the Nakdong River, Microcystis spp. showed maximum cell density (99 %) in harmful cyanobacteria (four target genera). A strong correlation between phycocyanin(measured in the laboratory) concentrations and harmful cyanobacterial cell density was observed (r = 0.90, p < 0.001), while a weaker relationship (r = 0.65, p < 0.001) resulted between chlorophyll a concentration and harmful cyanobacterial cell density. As a result of comparing the phycocyanin concentration (measured in submersible fluorescence sensor) and harmful cyanobacterial cell density, the error range increased as the number of cyanobacteria cells increased. Before opening the estuary bank, the diurnal variations of phycocyanin concentrations did not mix by depth, and in the case of the surface layer, a pattern of increase and decrease over time was shown. This study is the result of analysis when Microcystis spp. is dominant in downstream of Nakdong River in summer, therefore the correlation between the harmful cyanobacteria density and phycocyanin concentrations should be more generalized through spatio-temporal expansion.

Implementation of Analog Signal Processing ASIC for Vibratory Angular Velocity Detection Sensor (진동형 각속도 검출 센서를 위한 애널로그 신호처리 ASIC의 구현)

  • 김청월;이병렬;이상우;최준혁
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.65-73
    • /
    • 2003
  • This paper presents the implementation of an analog signal-processing ASIS to detect an angular velocity signal from a vibrator angular velocity detection sensor. The output of the sensor to be charge appeared as the variation of the capacitance value in the structure of the sensor was detected using charge amplifiers and a self oscillation circuit for driving the sensor was implemented with a sinusoidal self oscillation circuit using the resonance characteristics of the sensor. Specially an automatic gain control circuit was utilized to prevent the deterioration of self-oscillation characteristics due to the external elements such as the characteristic variation of the sensor process and the temperature variation. The angular velocity signal, amplitude-mod)Hated in the operation characteristics of the sensor, was demodulated using a synchronous detection circuit. A switching multiplication circuit was used in the synchronous detection circuit to prevent the magnitude variation of detected signal caused by the amplitude variation of the carrier signal. The ASIC was designed and implemented using 0.5${\mu}{\textrm}{m}$ CMOS process. The chip size was 1.2mm x 1mm. In the experiment under the supply voltage of 3V, the ASIC consumed the supply current of 3.6mA and noise spectrum density from dc to 50Hz was in the range of -95 dBrms/√Hz and -100 dBrms/√Hz when the ASIC, coupled with the sensor, was in normal operation.

A study on New Non-Contact MR Current Sensor for the Improvement of Reliability in CMOS VLSI (CMOS회로의 신뢰도 향상을 위한 새로운 자기저항소자 전류감지기 특성 분석에 관한 연구)

  • 서정훈
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.1
    • /
    • pp.7-13
    • /
    • 2001
  • As the density of VLSI increases, the conventional logic testing is not sufficient to completely detect the new faults generated in design and fabrication processing. Recently. IDDQ testing becomes very attractive since it can overcome the limitations of logic testing. This paper presents a new BIC for the internal current test in CMOS logic circuit. Our circuit is composed of Magnetoresistive current sensor, level shifter, comparator, reference voltage circuit and a circuit be IDDQ tested as a kind of self-testing fashion by using the proposed BIC.

  • PDF

A Study on the Improvement of Noise Properties of the PSS-PT-PZ Pyroelectric Infrared Sensor (PSS-PT-PZ 초전형 적외선 센서의 잡음특성 개선에 관한 연구)

  • Woo, Seung-Il;Lee, Sung-Gap;Lee, Young-Hie;Park, Chang-Yub
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.759-761
    • /
    • 1992
  • $0.10Pb(Sb_{1/2}Sn_{1/2})O_3-0.25PbTiO_3-0.65PbZrO_3+MnO_2(0.18mol%)$, NiO(0.15mol%) temary compound ceramics won fabricated by the mixed-oxide method. Noise properties of the pyroelectric infrared sensor were investigated with particle size of the raw materials and gain size of the specimens. Particle size were decreased and sintered density, voltage resposivity were increased with increasing the ball-mill times. The specimen ball-milled for a 80[hr] showed a good pop-corn noise properties.

  • PDF

Heart Rate Variability Analysis for Significance Between Ag/AgCl Electrode and Electric Textile Sensor in Wearable Condition

  • Shin, Hang-Sik;Lee, Chung-Keun;Yun, Yong-Hyeon;Lee, Myoung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.453-456
    • /
    • 2005
  • Significance verification of electric fabric compared with existing electrode is very useful for the wearable and ubiquitous healthcare. In this paper, we verified the significance between Ag/AgCl electrode and electric fabric in dry-normal condition through heart rate variability analysis. We can find 98 % or more similarity about low frequency and high frequency which is important parameter for the heart rate variability analysis between two different electrodes in experiment. From this result, we confirmed that the power spectral density of low frequency, high frequency component from the electric fabric has high similarity compared with the result of heart rate variability from Ag/AgCl electrode in dry-normal condition.

  • PDF

Determination of Optimal Sensor Locations for Modal System Identification-based Damage Detection on Structures (주파수영역 손상식별 SI 기법에 적응할 최적센서 위치결정법)

  • 권순정;신수봉;박영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.95-102
    • /
    • 2003
  • To define an analytical model for a structural system or to assess damage in the system, system identification(SI) methods have been developed and widely applied. The paper presents a method of determining optimal sensor location(OSL) based on the maximum likelihood approach, which is applicable to modal SI methods. To estimate unknown parameters reliably, it is necessary that the information provided by the experiment should be maximized. By applying the Cramer-Rao inequality, a Fisher information matrix in terms of the probability density function of measurements is obtained from a lower bound of the estimation error. The paper also proposes a scheme of determining of OSL on damaged structures by using maximum strain energy factor. Simulation studies have carried out to investigate the proposed OSL algorithm for both undamaged and damaged structures.

  • PDF

The Three Dimensional Modeling Method of Structure in Urban Areas using Airborne Multi-sensor Data (다중센서 데이터를 이용한 구조물의 3차원 모델링)

  • Son, Ho-Woong;Kim, Ki-Young;Kim, Young-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.7-19
    • /
    • 2006
  • Laser scanning is a new technology for obtaining Digital Surface Models(DSM) of the earth surface.It is a fast method for sampling the earth surface with high density and high point accuracy. This paper is for buildings extraction from LiDAR points data. The core part of building construction is based on a parameters filter for distinguishing between terrain and non-terrain laser points. The 3D geometrical properties of the building facades are obtained based on plane fitting using least-squares adjustment. The reconstruction part of the procedure is based on the adjacency among the roof facades. Primitive extraction and facade intersections are used for building reconstruction. For overcome the difficulty just reconstruct of laser points data used with digital camera images. Also, 3D buildings of city area reconstructed using digital map. Finally, In this paper show 3D building Modeling using digital map and LiDAR data.

  • PDF