• Title/Summary/Keyword: sensor density

Search Result 601, Processing Time 0.03 seconds

Position-Selective Metal Oxide Nanostructures using Atomic Thin Carbon Layer for Hydrogen Gas Sensors

  • Yu, Hak Ki
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.369-373
    • /
    • 2020
  • A hydrogen sensor was fabricated by utilizing a bundle of metal oxide nanostructures whose growth positions were selectively controlled by utilizing graphene, which is a carbon of atomic-unit thickness. To verify the reducing ability of graphene, it was confirmed that the multi-composition metal oxide V2O5 was converted into VO2 on the graphene surface. Because of the role of graphene as a reducing catalyst, it was confirmed that ZnO and MoO3 nanostructures were grown at high density only on the graphene surface. The fabricated gas sensor showed excellent sensitivity.

An efficient cluster header election scheme considering distancefrom upper node in zigbee environment (Zigbee 환경에서 Upper Node와의 거리를 고려한 효율적인클러스터 헤더 선출기법)

  • Park, Jong-Il;Lee, Kyoung-Hwa;Shin, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.369-374
    • /
    • 2010
  • It is important to efficiently elect the cluster header in Hierarchical Sensor Network, because it largely affects on the lifetime of the network. Therefore, recent research is focused on the lifetime extension of the whole network for efficient cluster header election. In this paper, we propose the new Cluster Header Election Scheme in which the cluster is divided into Group considering Distance from Upper Node, and a cluster header will be elected by node density of the Group. Also, we evaluate the performance of this scheme, and show that this proposed scheme improves network lifetime in Zigbee environment.

A Fiber Laser Spectrometer Demodulation of Fiber Bragg Grating Sensors for Measurement Linearity Enhancement

  • Kim, Hyunjin;Song, Minho
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.312-316
    • /
    • 2013
  • A novel fiber-optic sensor system is suggested in which fiber Bragg grating sensors are demodulated by a wavelength-sweeping fiber laser source and a spectrometer. The spectrometer consists of a diffraction grating and a 512-pixel photo-diode array. The reflected Bragg wavelength information is transformed into spatial intensity distribution on the photo-diode array. The peak locations linearly correspond to the Bragg wavelengths, regardless of the nonlinearities in the wavelength tuning mechanism of the fiber laser. The high power density of the fiber laser enables obtaining high signal-to-noise ratio outputs. The improved demodulation characteristics were experimentally demonstrated with a fiber Bragg grating sensor array with 5 gratings. The sensor outputs were in much more linear fashion compared with the conventional tunable band-pass filter demodulation. Also it showed advantages in signal processing, due to the high level of photo-diode array signals, over the broadband light source system, especially in measurement of fast varying dynamic physical quantities.

Vibration Measurements of Footbridges Using Wireless MEMS Sensor (무선 MEMS 센서를 이용한 보도교 진동 계측)

  • Lee, Jong-Ho;Cheon, Dong-Jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.101-108
    • /
    • 2019
  • Recently, measuring instruments for SHM of structures has been developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to the absence of triboelectric noise and elimination of the requirement of a cumbersome cable. However, the low-cost wireless MEMS sensor has high noise density and transmits the signal wirelessly, so data transmission delay occurs during measurement. Therefore, the footbridges that was previously measured by a mobile phone in 2014 was remeasured using G-Link-200, iPad and iPhone to compare their performance.

Channel Selection Technique Considering Energy Efficiency in Routing Algorithms of the Sensor Network (센서네트워크의 라우팅 프로토콜에서 에너지 효율을 고려한 채널 선택 기법)

  • Subedi, Sagun;Lee, Sang-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.662-665
    • /
    • 2020
  • Energy Efficiency in any WSN (Wireless Sensor Network) is a critical issue to elongate the life of the batteries equipped in sensors. LEACH(Low Energy Adaptive Clustering Hierarchy) is one of the mostly used routing algorithms which reduce the amount of transmitted data and save the energy in the network. In this paper, a new technique to select channels in routing algorithms is suggested and compared with the LEACH, ALEACH and PEGASIS. This technique forms clusters depending upon the node density as the deployement of the nodes is random. As a result, the proposed algorithm presents the better performance of the energy efficiency than those of the current algorithms.

Nickel Doping on Cobalt Oxide Thin Film Using by Sputtering Process-a Route for Surface Modification for p-type Metal Oxide Gas Sensors

  • Kang, Jun-gu;Park, Joon-Shik;An, Byeong-Seon;Yang, Cheol-Woong;Lee, Hoo-Jeong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1867-1872
    • /
    • 2018
  • This study proposes a route for surface modification for p-type cobalt oxide-based gas sensors. We deposit a thin layer of Ni on the Co oxide film by sputtering process and annealed at $350^{\circ}C$ for 15 min in air, which changes a typical sputtered film surface into one interlaced with a high density of hemispherical nanoparticles. Our in-depth materials characterization using transmission electron microscopy discloses that the microstructure evolution is the result of an extensive inter-diffusion of Co and Ni, and that the nanoparticles are nickel oxide dissolving some Co. Sensor performance measurement unfolds that the surface modification results in a significant sensitivity enhancement, nearly 200% increase for toluene (at $250^{\circ}C$) and CO (at $200^{\circ}C$) gases in comparison with the undoped samples.

A Wireless Sensor Network Technique and its Application in Regional Landslide Monitoring (광역적 산사태 모니터링을 위한 무선센서네트워크 기술의 적용)

  • Jeong, Sang-Seom;Hong, Moon-Hyun;Kim, Jung-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.19-32
    • /
    • 2018
  • In this study, the applicability and practicality of landslides monitoring by using wireless sensor network (WSN) was analysed. WSN system consists of a sensor node for collecting and transmitting data using IEEE 802.14e standard, a gateway for collecting data and transmitting the data to the monitoring server. In the topology of the sensor network, a highly flexible and reliable mesh type was adopted, and three testbeds were chosen in each location of Seoul metropolitan area. Soil moisture sensors, tensiometers, inclinometers, and a rain gauge were installed at each testbed and sensor node to monitor the landslide. For the estimation of the optimal network topology between sensor nodes, the susceptibility assessment of landslides, forest density and viewshed analysis of terrain were conducted. As a result, the network connection works quite well and measured value of the volumetric water content and matric suction simulates well the general trend of the soil water characteristic curve by the laboratory test. As such, it is noted that WSN system, which is the reliable technique, can be applied to the landslide monitoring.

Adaptive Link Quality Estimation and Routing Scheme in Large-scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 적응적 링크 품질 측정 및 경로 설정 기법)

  • Lee, Jung-Wook;Chung, Kwang-Sue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.68-77
    • /
    • 2010
  • Wireless sensor networks are installed in various environments and collect sensing data through wireless links. The quality of a wireless link may be unstable due to environment causes and hardware performance in wireless sensor networks. Since the change of the link quality may cause data loss, sensor nodes need to adaptively estimate the change of the link quality. Also, the routing protocol should deal with this situation. In this paper, the adaptive link quality estimation and routing scheme in the large-scale wireless sensor networks are proposed. When the quality of a link is unstable, sensor nodes agilely estimate the quality of links, and the new route is selected. When quality of a link is stable, the link quality is occasionally estimated so that the energy consumption is reduced. Moreover, sensor nodes exchange less beacons in order to reduce an overhead in dense networks. In the case of sparse network, the sensor nodes exchange more beacons for finding a better route. We prove that the proposed scheme can improve the energy efficiency and reliability.

Comparison of Nondestructive Damage Sensitivity of Single Fiber/Epoxy Composites Using Ceramic PZT and Polymeric PVDF Sensors By Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 AE를 이용한 세라믹 PZT 및 고분자 PVDF 센서에 따른 단섬유 강화 에폭시 복합재료의 비파괴 손상감지능 비교)

  • Jung Jin-Kyu;Kim Dae-Sik;Park Joung-Man;Yoon Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.135-138
    • /
    • 2004
  • Conventional piezoelectric lead-zirconate-titanate (PZT) senor has high sensitivity, but it is very brittle. Recently polymer films such as polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride­trifluoroethylene) (P(VDF-TrFE)) copolymer have been used as a sensor. The advantages of polymer sensor are the flexibility and mechanical toughness. Simple process and possible several shapes are also additional advantages. Polymer sensor can be directly embedded in a structure. In this study, nondestructive damage sensitivity of single basalt fiber/epoxy composites was investigated with sensor type and thermal damage using AE and oscilloscope. And AE waveform for epoxy matrix with various damage types was compared to each other. The damage sensitivity of two polymer sensors was rather lower than that of PZT sensor. The damage sensitivity of PVDF sensor did not decrease until thermal damage temperature at $80^{\circ}C$ and they decreased significantly at $110^{\circ}C$ However, the damage sensitivity of P(VDF-TrFE) sensor at $110^{\circ}C$ was almost same in no damage sensor. For both top and side impacts, the difference in arrival time increased with increasing internal and surface damage density of epoxy matrix.

  • PDF

Comparing NDVI to maximum latewood density of annual tree rings in a boreal coniferous forest in North China

  • He, Jicheng;Shao, Xuemei;Wang, Lili
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.34-36
    • /
    • 2003
  • In boreal conifers in China's Northeast area, maximum latewood density (MXD) of tree-ring varies in response to growing season temperature. Forest net productivity can be estimated using the Normalized-difference Vegetation Index (NDVI) calculated from satellite sensor data. MXD from the Mohe site in this area was compared with estimates of NPP for 1982-1999 produced by the NDVI model, which was established based on the relationship of leaf area index (LAI) and NDVI. The result shows that the MXD series correlated significantly with the NDVI model estimates series, suggesting that MXD appeared to be an appropriate index for productivity or canopy growth in region where forest productivity is strongly temperature-related.

  • PDF